Биохимия ЭКЗАМЕН билеты+ответы. Билет 1 Мультиферментные комплексы и изоферменты. Кдз определения активности изоферментов. Энзимодиагностика. Ферментативные лекарственные препараты
Скачать 2.15 Mb.
|
Условно заменимые аминокислоты ( могут образоваться из других кислот в организме )Агринин Усиливает высвобождение инсулина, глюкагона и гормона роста. Помогает залечивать раны, образовывать коллаген, стимулирует иммунную систему. Предшественник креатина. Может увеличить количество спермы и реакцию Т-лимфоцитов. Тирозин Предшественник нейролередатчиков допамина, норэлинефрина и эпинефрина, а также тиреоидина, гормона роста и меланина (пигмент, ответственный за цвет кожи и волос). Повышает настроение. Цистеин В комбинации с L-аспарагиновой кислотой и L -цитруллином обезвреживает вредные химические вещества. Уменьшает вред от употребления табака и алкоголя. Стимулирует активность белых кровяных телец. Незаменимые аминокислоты ( нужно употреблять каждый день с пищей )Валин Аминокислота с разветвленными боковыми цепочками. Не перерабатывается в печени и активно используется мышцами. Гистидин Поглощает ультрафиолетовые лучи. Важен для производства красных и белых кровяных телец, применяется для лечения анемии. Применяется для лечения аллергических заболеваний, ревматоидных артритов и язв желудка и кишечника Изолейцин Аминокислота с разветвленными боковыми цепочками. Обеспечивает мышечные ткани энергией. Помогает справиться с усталостью мышц при переутомлении. Играет ключевую роль в выработке гемоглобина. Лейцин Аминокислота с разветвленными боковыми цепочками, используется как источник энергии. Замедляет распад мышечного протеина. Способствует заживлению ран и сращиванию костей. Лизин Его нехватка может замедлить синтез протеина в мышцах и соединительной ткани. Лизин и витамин С вместе образуют L-карнитин вещество, которое помогает мышцам более эффективно Использовать кислород, повышая их выносливость. Способствует росту костей, помогает вырабатывать коллаген - волокнистый протеин, входящий в состав костей, хрящей и других соединительных тканей. Метионин Предшественник цистина и креатина. Может повышать уровень антиоксидантов(глютатиона) и снижать холестерин. Помогает выводить токсины и восстанавливать ткани печени и почек. Треонин Обезвреживает токсины. Помогает предотвратить накопление жира в печени. Важный компонент коллагена. Триптофан Предшественник нейропередатчика серотонина, который создает успокаивающий эффект. Стимулирует выработку гормона роста. В настоящее время в США эта аминокислота в свободной форме не продается. Поступает в организм с естественной пищей. Фенилаланин Главный предшественник тирозина Усиливает умственные способности, укрепляет память, поднимает настроение и тонус. Применяется для лечения некоторых видов депрессий. Основной элемент в производстве коллагена. Подавляет аппетит. По строению соединений, получающихся при расщеплении углеродной цепи аминокислоты в организме, различают: а) глюкопластичные (глюкогенные) - при недостаточном поступлении углеводов или нарушении их превращения они через щавелевоуксусную и фосфоэнолпировиноградную кислоты превращаются в глюкозу (глюкогенез) или гликоген. К этой группе относятся глицин, аланин, серин, треонин, валин, аспарагиновая и глутаминовая кислота, аргинин, гистидин и метионин; б) кетопластичные (кетогенные) - ускоряют образование кетоновых тел - лейцин, изолейцин, тирозин и фенилаланин (три последние могут быть и глюкогенными). Аминокислотный пул. 2/3 пула – эндогенные источники,1/3 пула пополняется за счёт пищи. Фонд свободных АМК организма примерно 35 г.
Кальций. В организме взрослого человека содержится 1,2 кг кальция. В костях находится 99% от общего количества кальция: 85%- фосфат кальция, 10%- карбонат кальция, 5%- цитрат кальция и лактат кальция. В плазме крови содержится 2,25-2,75 ммоль/л кальция: 50%- ионизированный кальций, 40%- кальций, связанный с белком, 10%- соли кальция. Суточная потребность- 1,3-1,4 г кальция. При беременности и лактации - 2 г/сутки. Пищевые источники: молоко, сыр, рыба, орехи, бобы, овощи. Всасывание кальция происходит в тонком кишечнике при участии кальцитриола. зависит от соотношения фосфора и кальция в пище. Оптимальное соотношение для совместного усвоения 1 : 1-1,5 находится в молоке. Способствуют всасыванию кальция: витамин D, цинк, желчные кислоты, цитрат. Жирные кислоты тормозят всасывание кальция. Биологическая роль кальция - в костной и зубной ткани кальций находится в виде гидроксиапатита Са10(РО4)6(ОН)2, вторичный посредник в передаче регуляторных сигналов, влияет на сердечную деятельность, фактор системы свёртывания крови, участвует в процессах нервно-мышечной возбудимости, активатор ферментов (липазы, протеинкиназы), влияет на проницаемость клеточных мембран. Кальций вторичный посредник в передаче регуляторных сигналов. Гипокальциемия наблюдается при: рахите, гипопаратиреозе, механической желтухе, болезнях почек, остеомаляции, туберкулёзе, у новорожденных, так как прекращается поступление кальция через плаценту. При этом повышается нервно-мышечная возбудимость, появляются судороги. Способствуют развитию гипокальциемии у новорожденных: недоношенность, асфиксия в родах, сахарный диабет у матери. Деминерализующие факторы подавляют утилизацию минеральных элементов (Са,Fe, Zn, Mg). Фитин образует трудно растворимые комплексы с минеральными элементами. Содержится в: фасоли, горохе, орехах, кукурузе, пшеничной муке. В ржаной муке повышена активность фитазы. Щавелевая кислота образует нерастворимые соли кальция. Содержится в: шпинате, щавеле, красной свёкле, чае, какао. Гиперкальциемия наблюдается при: передозировке витамина D, злокачественных опухолях с метастазами в кость, заболеваниях крови (лейкоз, лимфома, миелома), саркоидозе, туберкулёзе, тиреотоксикозе, хроническом энтерите, первичной гиперфункции паращитовидных желёз. Фосфор. В организме взрослого человека содержится 1 кг фосфора. 90% фосфора содержится в костной ткани: в виде фосфата кальция (2/3), растворимые соединения (1/3). 8-9% - внутри клеток,1% — во внеклеточной жидкости. В плазме крови содержится 0,6- 1,2 ммоль/л фосфора (у детей больше в 3-4 раза) в виде: ионов, в составе фосфолипидов, нуклеиновых кислот, эфиров. Суточная потребность -2 г фосфора. Пищевые источники: морская рыба, молоко, яйца, орехи, злаки. Биологическая роль фосфора. Входит в состав: костной ткани, фосфолипидов, фосфопротеинов, коферментов, нуклеиновых кислот, эфиров, буферных систем плазмы и тканевой жидкости. Гипофосфатемия возникает при рахите, остеомаляции, введении инсулина, гиперпаратиреозе. Гиперфосфатемия установлена пригипопаратиреозе, лейкозах,приёме тироксина, гипервитаминозе D, УФ – облучении, у новорожденных. Регуляция фосфорно-кальциевого обмена. Регулируют обмен кальция и фосфора: паратгормон, кальцитриол, кальцитонин, СТГ, паротины. Органы-мишени: костная ткань, почки, кишечник. Cоматотропный гормон - способствует росту скелета, повышает синтез коллагена, стимулирует синтез ДНК и РНК. Паротины – гормоны слюнных желёз, способствуют минерализации зуба, индуцируют отложение фосфорно-кальциевых соединений. Паратгормон - пептид из 84 аминокислот. Выделяется при уменьшении содержания кальция в крови. Органы-мишени: почки, костная ткань. Способствует резорбции кости остеокластами и вымыванию солей кальция в кровь снижает экскрецию кальция и повышает экскрецию фосфора почками посредством стимуляции синтеза кальцитриола в почках увеличивает эффективность всасывания кальция в кишечнике. В крови при действии паратгормона возрастает концентрация кальция. Гипопаратиреоз. Возникает при удалении, повреждении паращитовидных желёз. Клинические проявления: в крови уменьшается концентрация кальция и возрастает концентрация фосфора изменения кожи, волос, костей, ногтей, катаракта, повышается нейро-мышечная возбудимость, судороги, паралич дыхательных мышц, ларингоспазм. Гиперпаратиреоз. Возникает при: аденоме паращитовидных желёз, гиперплазии паращитовидных желёз, эктопической продукции ПТГ злокачественной опухолью. Клинические проявления:в крови возрастает концентрация кальция и уменьшается концентрация фосфора, кости теряют кальций,переломы, почечная недостаточность, отложение кальция в сосудах, органах. Кальцитонин - пептид из 32 аминокислот. Секретируется клетками щитовидной железы. Мишень кальцитонина – костная ткань. Кальцитонин способствует: отложению кальция и фосфора в кости в результате деятельности остеобластов, подавлению резорбции кости (ингибитор остеокластов).иПри действии кальцитонина концентрация кальция в крови уменьшается и возрастает в костях.
Билет 44.
Оксидоредуктазы катализируют окислительно-восстановительные реакции. Трансферазы - реакции с переносом групп. Гидролазы - гидролитический разрыв связи СС, СN, СS с присоединением воды по месту разрыва. Лиазы – реакции негидролитического расщепления с образованием двойных связей, некоторые обратные реакции синтеза. Изомеразы – перенос групп внутри молекулы с образованием изомеров. Лигазы катализируют соединение двух молекул, сопряжённое с разрывом пирофосфатной связи АТФ. Изомеразы катализируют взаимопревращения изомеров цис-транс-изомеразы, мутазы, триозофосфатизомераза катализирует взаимопревращение альдоз и кетоз. Подкласс определяется характером изомерных превращений. Подподкласс уточняет тип реакции изомеризации. КОФЕРМЕНТЫ ИЗОМЕРАЗ. Кобамидные коферменты являются производными витамина В12 (кобаламина). В центре его молекулы атом кобальта соединен с атомами азота 4 восстановленных пиррольных колец, образующих корриновое ядро. В ходе выделения витамина с помощью цианидов атом кобальта присоединяет анион СN¯, но при превращении в кофермент цианкобаламин теряет СN¯,место которого занимает 5'-дезоксиаденозил (дезоксиаденозилкобаламин), либо метил (метилкобаламин). Кобамидные коферменты - отщепляют от субстратов одноуглеродные остатки и передают ТГФК, а затем другому субстрату, работают ТГФК и цианкобаламин совместно. Биологическая роль - как кофермент в реакциях метилирования (реакции синтеза метионина), кофермент изомераз в обмене липидов, образование из рибозы дезоксирибозы, для превращения фолиевой кислоты в фолиновую, влияет на созревание эритроцитов. Лигазы катализируют соединение двух молекул, сопряжённое с разрывом пирофосфатной связи АТФ. В ходе реакции образуются связи C-O, C-S, C-N, C-C. Подкласс определяется типом синтезируемой связи. Примеры лигаз: глутаминсинтетаза, ацетилКоА-карбоксилаза. КОФЕРМЕНТЫ ЛИГАЗ (СИНТЕТАЗ) Карбоксибиотин участвует во многих реакциях карбоксилирования, например, при синтезе оксалоацетата из пирувата, при синтезе жирных кислот. Верхняя часть молекулы биотина представлена мочевиной, нижняя часть - тиофеном, боковая цепь - валериановой кислотой. Для образования кофермента карбоксибиотина, связанного с энзимом E требуется НСО3¯, энергия АТФ и фермент (Е). 2. Остаточный азот - небелковые азотистые вещества, остающиеся в крови после осаждения белков, 14-25 ммоль/л. В диагностических целях используется определение мочевины вместо определения остаточного азота. Состав остаточного азота - азот мочевины – 50%, азот аминокислот - 25%, мочевая кислота - 4%, креатин, креатинин – 7,5%, аммиак и индикан до 1%, азот полипептидов, нуклеотидов и других азотистых соединений – 5%. Продукционная азотемия при усиленном распаде тканевых белков, опухолях, туберкулёзе, диабете, циррозе. Ретенционная азотемия связана с нарушением выделительной функции почек, повышается концентрация мочевины, креатинина, мочевой кислоты, индикана. Индикан (1, 4-3,7 мкмоль/л). Секретируется в кровь и удаляется с мочой, концентрация в крови зависит от: - состояния ЖКТ (от интенсивности продукции индола), - экскреторной функции почек. Индикан повышается при - болезнях почек, кишечной непроходимости, брюшном тифе, раке желудка. Продукционная индиканемия обусловлена ускорением образования индикана при заболеваниях ЖКТ, сопровождается индиканурией, диспепсии, дефицит витамина В6 (нарушен распад триптофана). Ретенционная индиканемия при - снижении выделительной функции почек, поражении почек, токсикозах беременных. Содержание аммиака в крови определяется ионообменным методом, составляет 25 – 40 мкмоль/л. Гипераммониемия – повышенное содержание аммиака в крови. Рвота, сонливость, раздражительность, нарушение координации, судороги, потеря сознания, отёк мозга. Гипераммониемия типа I - наследственная, при недостатке карбамоилфосфатсинтетазы1. Гипераммониемия типа II - наследственная, при недостатке орнитинкарбамоилтрансферазы. 3. Ответ. Нет. Следует изучить содержание ЛП. Большое количество ЛПНП сильно коррелирует с атеросклеротическими нарушениями в организме. По этой причине такие липопротеины часто называют «плохими». Низкомолекулярные липопротеиды малорастворимы и склонны к выделению в осадок кристаллов холестерина и к формированию атеросклеротических бляшек в сосудах, тем самым повышая риск инфаркта или ишемического инсульта, а также других сердечно-сосудистых осложнений. Большое содержание ЛПВП в крови характерно для здорового организма, поэтому часто эти липопротеины называют «хорошими». Высокомолекулярные липопротеины хорошо растворимы и не склонны к выделению холестерина в осадок, и тем самым защищают сосуды от атеросклеротических изменений (то есть не являются атерогенными). |