Биологические мембраны
Скачать 1.56 Mb.
|
Типы движений липидных молекул в бислое мембранЛипидная асимметрия возникает прежде всего потому, что липиды с более объёмными полярными «головками» стремятся находиться в наружном монослое, так как там площадь поверхности, приходящаяся на полярную «головку», больше. Фосфатидилхолины и сфингомиелины локализованы преимущественно в наружном монослое, а фосфатидилэтаноламины и фосфатидилсерины в основном во внутреннем.Липиды в некоторых биологических мембранах с довольно большой частотой мигрируют с одной стороны мембраны на другую, т.е. совершают «флип-флоп» (от англ. flip—flop) перескоки. Перемещение липидных молекул затрудняют полярные «головки», поэтому липиды, находящиеся на внутренней стороне мембраны, имеют относительно высокую скорость трансмембранной миграции по сравнению с липидами наружной стороны мембраны, мигрирующих медленнее или вообще не совершающими «флип-флоп» перескоки.
Для мембран характерна жидкостность (текучесть), способность липидов и белков к латеральной диффузии. Скорость перемещения молекул зависит от микровязкости мембран, которая, в свою очередь, определяется относительным содержанием насыщенных и ненасыщенных жирных кислот в составе липидов. Микровязкость меньше, если в составе липидов преобладают ненасыщенные жирные кислоты, и больше при высоком содержании насыщенных жирных кислот. Ацильные (алифатические) остатки ненасыщенных жирных кислот имеют так называемые «изломы». Эти «изломы» препятствуют слишком плотной упаковке молекул в мембране и делают её более рыхлой, а следовательно и более «текучей». На текучесть мембран также влияют размеры углеводородных «хвостов» липидов, с увеличением длины которых мембрана становится более «текучей».
Фосфо- и гликолипиды мембран, помимо участия в формировании липидного бислоя, выполняют ряд других важных функций. Липиды формируют среду для функционирования мембранных белков, принимающих в ней нативную конформацию. Выделенные из мембран ферменты, лишённые липидного окружения, как правило, не проявляют каталитической активности. Некоторые мембранные липиды — предшественники вторичных посредников при передаче гормонального сигнала. Так, фосфати-дилинозитол-4,5-бисфосфат (ФИФ2) под действием фермента фосфолипазы С гидролизует-ся до диацилглицерола (ДАТ), активатора про-теинкиназы С и инозитол-1,4,5-трифосфата (ИФ3) — регулятора кальциевого обмена в клетке. ДАТ, ИФ3, протеинкиназа С и Са2+ — участники инозитолфосфатной системы передачи сигнала. Кроме того, некоторые липиды выполняют «якорную» функцию, например к фосфатидил-инозитолам через олигосахарид могут присоединяться специфические белки наружной поверхности клетки. Фосфатидилинозитол с присоединённым к нему олигосахаридом (гликаном) называют фосфатидилинозитолгликаном. Связь белков с этой молекулой (гликаном) осуществляется через фосфоэтаноламин. Пример такого «заякоренного» белка — ацетилхолинэстераза, катализирующая гидролиз ацетил-холина в синаптической щели. Этот фермент фиксируется на постсинаптической мембране, ковалентно присоединяясь к фосфатидилинозитолгликану. Под действием фосфолипазы С может происходить отделение белков от внешней поверхности клетки. Липиды могут быть аллостерическими активаторами мембранных ферментов. Фермент протеинкиназа С катализирует реакции фосфорилирования белков по аминокис- лотным остаткам серина и треонина. В неактивной форме протеинкиназа С находится в цитозоле. Однако после стимуляции клетки (повышение в клетке концентрации кальция) фермент быстро активируется ионами кальция и оказывается связанным с мембраной. Функционально активная протеинкиназа С — комплекс, содержащий мономер фермента, молекулу диацилглицерола, один или более ионов Са2+ и четыре молекулы фосфатидилсерина. Креатинкиназа, фермент катализирующий образование макроэргического соединения креа-тинфосфата. Для проявления его активности требуется специфическое взаимодействие с кардиолипином внутренней мембраны митохондрий. БЕЛКИ МЕМБРАНЕсли основная роль липидов в составе мембран заключается в стабилизации бислоя, то белки отвечают за функциональную активность мембран. Одни из них обеспечивают транспорт определённых молекул и ионов, другие являются ферментами, третьи участвуют в связывании цитоскелета с внеклеточным матриксом или служат рецепторами для гормонов, медиаторов, эйкозаноидов, липопротеинов, оксида азота (N0). На долю белков приходится от 30 до 70% массы мембран. Белки определяют особенности функционирования каждой мембраны. |