Главная страница
Навигация по странице:

  • 13. Структура и виды РНК. Роль РНК в процессе реализации наследственной информации.

  • Структура РНК.

  • 1) Информационная РНК (и-РНК).

  • 2) Рибосомная РНК (р-РНК).

  • 3) Транспортная РНК (т-РНК).

  • 14.Этапы реализации наследственной информации: транскрипция, трансляция.

  • 15.Белки – непосредственные продукты и реализаторы генетической информации. Молекулярное строение и функции белков как субстрата жизни.

  • 20. Реализация генетической информации в клетке

  • 21. Классификация генов: структурные и регуляторные. Регуляция экспрессии генов прокариот по типу индукции и корепрессии (модель оперона)

  • 22. Регуляция активности генов у эукариот

  • 3. Генетика

  • 24. Ген, как функциональная единица наследственности, его свойства. Основные положения теории гена, свойства гена.

  • Экзамен чгма. Экзамен(ЧГМА)-WPS Office. Экзамен(чгма) Раздел Биология клетки


    Скачать 0.72 Mb.
    НазваниеЭкзамен(чгма) Раздел Биология клетки
    АнкорЭкзамен чгма
    Дата12.05.2023
    Размер0.72 Mb.
    Формат файлаdocx
    Имя файлаЭкзамен(ЧГМА)-WPS Office.docx
    ТипДокументы
    #1125659
    страница2 из 20
    1   2   3   4   5   6   7   8   9   ...   20

    Свойства генетического кода:

    Триплетность — значащей единицей кода является сочетание трёх нуклеотидов (триплет, или кодон).

    Непрерывностьмежду триплетами нет знаков препинания, то есть информация считывается непрерывно.

    Неперекрываемость — один и тот же нуклеотид не может входить одновременно в состав двух или более триплетов (не соблюдается для некоторых перекрывающихся генов вирусов, митохондрий и бактерий, которые кодируют несколько белков, считывающихся со сдвигом рамки).

    Специфичность — определённый кодон соответствует только одной аминокислоте Вырожденность (избыточность) — одной и той же аминокислоте может соответствовать несколько кодонов.

    Универсальность — генетический код работает одинаково в организмах разного уровня сложности — от вирусов до человека

    13. Структура и виды РНК. Роль РНК в процессе реализации наследственной информации.

    Рибонуклеиновая кислота (РНК) – это однонитевой биополимер, в качестве мономеров которого выступают нуклеотиды. Матрицей для синтеза новых молекул РНК являются молекулы дезоксирибонуклеиновой кислоты (транскрипция РНК). В транскрипции РНК, происходящей в ядре клетки, участвует целый ряд ферментов, наиболее значимым из которых является РНК-полимераза.

    Структура РНК.
    Молекула имеет однонитевое строение. Полимер. В результате взаимодействия нуклеотидов друг с другом молекула РНК приобретает вторичную структуру, различной формы (спираль, глобула и т.д.). Мономером РНК является нуклеотид (молекула, в состав которой входит азотистое основание, остаток фосфорной кислоты и сахар (пептоза)). РНК напоминает по своему строению одну цепь ДНК. Нуклеотиды, входящие в состав РНК: гуанин, аденин, цитозин, урацил. Аденин и гуанин относятся к пуриновым основаниям, цитозин и урацил к пиримидиновым. В отличие от молекулы ДНК, в качестве углеводного компонента рибонуклеиновой кислоты выступает не дезоксирибоза, а рибоза. Вторым существенным отличием в химическом строении РНК от ДНК является отсутствие в молекуле рибонуклеиновой кислоты такого нуклеотида как тимин. В РНК он заменён на урацил. Функции РНК различаются в зависимости от вида рибонуклеиновый кислоты.

    1) Информационная РНК (и-РНК).
    Иногда данный биополимер называют матричной РНК (м-РНК). Данный вид РНК располагается как в ядре, так и в цитоплазме клетки. Основное назначение – перенос информации о строении белка от дезоксирибонуклеиновой кислоты к рибосомам, где и происходит сбор белковой молекулы. Относительно небольшая популяция молекул РНК, составляющая менее 1% от всех молекул.

    2) Рибосомная РНК (р-РНК).
    Самый распространенный вид РНК (около 90% от всех молекул данного вида в клетке). Р-РНК расположена в рибосомах и является матрицей для синтеза белковых молекул. Имеет наибольшие, по сравнению с другими видами РНК, размеры. Молекулярная масса может достигать 1,5 миллионов кДальтон и более.

    3) Транспортная РНК (т-РНК).
    Расположена, преимущественно, в цитоплазме клетки. Основное назначение- осуществление транспорта (переноса) аминокислот к месту синтеза белка (в рибосомы). Транспортная РНК составляет до 10% от всех молекул РНК, располагающихся в клетке. Имеет наименьше, по сравнению с другими РНК- молекулами, размеры (до 100 нуклеотидов).

    14.Этапы реализации наследственной информации: транскрипция, трансляция.

    Синтез белка состоит из двух этапов - транскрипции и трансляции.

    I. Транскрипция (переписывание) - биосинтез молекул РНК, осуществляется в хромосомах на молекулах ДНК по принципу матричного синтеза. При помощи ферментов на соответствующих участках молекулы ДНК (генах) синтезируются все виды РНК (иРНК, рРНК, тРНК). Синтезируется 20 разновидностей тРНК, так как в биосинтезе белка принимают участие 20 аминокислот. Затем иРНК и тРНК выходят в цитоплазму, рРНК встраивается в субъединицы рибосом, которые также выходят в цитоплазму.

    II. Трансляция (передача) - синтез полипептидных цепей белков, осуществляется в рибосомах. Она сопровождается следующими событиями:

    1. Образование функционального центра рибосомы - ФЦР, состоящего из иРНК и двух субъединиц рибосом. В ФЦР всегда находятся два триплета (шесть нуклеотидов) иРНК, образующих два активных центра: А (аминокислотный) - центр узнавания аминокислоты и П (пептидный) - центр присоединения аминокислоты к пептидной цепочке.

    2. Транспортировка аминокислот, присоединенных к тРНК, из цитоплазмы в ФЦР. В активном центре А осуществляется считывание антикодона тРНК с кодоном иРНК, в случае комплементарностн возникает связь, которая служит сигналом для продвижения (скачок) вдоль иРНК рибосомы на один триплет. В результате этого комплекс "кодон рРНК и тРНК с аминокислотой" перемещается в активный центр П, где и происходит присоединение аминокислоты к пептидной цепочке (белковой молекуле). После чего тРНК покидает рибосому.

    3. Пептидная цепочка удлиняется до тех пор, пока не закончится трансляция и рибосома не соскочит с иРНК. На одной иРНК может умещаться одновременно несколько рибосом (полисома). Полипептидная цепочка погружается в канал эндоплазматиче-ской сети и там приобретает вторичную, третичную или четвертичную структуру. Скорость сборки одной молекулы белка, состоящего из 200-300 аминокислот, составляет 1-2 мин. Формула биосинтеза белка: ДНК (транскрипция) --> РНК (трансляция) --> белок.

    15.Белки – непосредственные продукты и реализаторы генетической информации. Молекулярное строение и функции белков как субстрата жизни.

    Белки – это биологические гетерополимеры, мономерами которых являются аминокислоты. Белки синтезируются в живых организмах и выполняют в них определенные функции. В состав белков входят атомы углерода, кислорода, водорода, азота и иногда серы. Мономерами белков являются аминокислоты – вещества, имеющие в своем составе неизменяемые части аминогруппу NH2 и карбоксильную группу СООН и изменяемую часть – радикал.
    Последовательность аминокислот в молекуле белка образует его первичную структуру. Она зависит от последовательности нуклеотидов в участке молекулы ДНК гене, кодирующем данный белок.


    Длинная молекула белка сворачивается и приобретает сначала вид спирали. Так возникает вторичная структура белковой молекулы. Между СО и NH – группами аминокислотных остатков, соседних витков спирали, возникают водородные связи, удерживающие цепь.
    Молекула белка сложной конфигурации в виде глобулы шарика, приобретает третичную структуру. Прочность этой структуры обеспечивается гидрофобными, водородными, ионными и дисульфидными S-S связями.
    Некоторые белки имеют четвертичную структуру, образованную несколькими полипептидными цепями
    Функции белков.


    Каталитическая ферментативная – белки ускоряют все биохимические процессы, идущие в клетке: расщепление питательных веществ в пищеварительном тракте, участвуют в реакциях матричного синтеза. Каждый фермент ускоряет одну и только одну реакцию как в прямом, так и в обратном направлении. Скорость ферментативных реакций зависит от температуры среды, уровня ее рН, а также от концентраций реагирующих веществ и концентрации фермента.
    Транспортная – белки обеспечивают активный транспорт ионов через клеточные мембраны, транспорт кислорода и углекислого газа, транспорт жирных кислот.
    Защитная – антитела обеспечивают иммунную защиту организма; фибриноген и фибрин защищают организм от кровопотерь.
    Структурная – одна из основных функций белков. Белки входят в состав клеточных мембран; белок кератин образует волосы и ногти; белки коллаген и эластин – хрящи и сухожилия.
    Сократительная – обеспечивается сократительными белками – актином и миозином.
    Сигнальная – белковые молекулы могут принимать сигналы и служить их переносчиками в организме гормонами. Следует помнить, что не все гормоны являются белками.
    Энергетическая – при длительном голодании белки могут использоваться в качестве дополнительного источника энергии после того, как израсходованы углеводы и жиры.


    20. Реализация генетической информации в клетке

    Реализация генетической информации — процесс, происходящий внутри каждой живой клетки, во время которого генетическая информация, записанная в ДНК, воплощается в биологически активных веществах — РНК и белках. Переход генетической информации от ДНК к РНК и от РНК к белку является универсальным для всех без исключения клеточных организмов. «Молекулярная догма» РНК-ДНК-РНК-белок. Стратегия реализации генетической информации вирусов включает три известные стадии — транскрипцию процесс синтеза мРНК, трансляцию процесс синтеза белка на мРНК и репликацию процесс самовоспроизведения генетического материала на основе матричного синтеза. При успешном протекании всех трех стадий реализации генетической информации вируса в клетке на фоне подавления синтеза ее собственных макромолекул наблюдается формирование пула вирусных макромолекул — белков капсида, гликопротеинов суперкапсида, геномных нуклеиновых кислот. Это является пусковым механизмом следующего этапа репликативного цикла вируса — сборки морфогенеза вирионов.

    21. Классификация генов: структурные и регуляторные. Регуляция экспрессии генов прокариот по типу индукции и корепрессии (модель оперона)

    Ген— структурно-функциональная единица генетического материала, наследственный фактор, который можно условно представить как отрезок молекулы ДНК, включающий нуклеотидную последовательность, в которой закодирована первичная структура полипептида белка либо молекулы транспортной или рибосомной РНК, синтез которых контролируется этим геном.
    По месту локализации генов в структурах клетки различают расположенные в хромосомах ядра, ядерные гены и цитоплазматические гены, локализация которых связана с хлоропластами и митохондриями. По функциональному значению различают:структурные гены, характеризующиеся уникальными последовательностями нуклеотидов, кодирующих свои белковые продукты, которые можно идентифицировать с помощью мутаций, нарушающих функцию белка, и регуляторные гены — последовательности нуклеотидов, не кодирующие специфические белки, а осуществляющие регуляцию действия гена.
    Регуляция: Прокариоты — это простейшие одноклеточные организмы, которым для того, чтобы выжить, требуется лишь благоприятная химическая среда.
    Экспрессия начинается и заканчивается или согласованно продолжается в ответ на один и тот же регуляторный сигнал. Гены, подчиняющиеся согласованной регуляции, в геноме часто бывают сцеплены и транскрибируются с промотора, находящегося на 5-конце такой группы генов кластера, в виде единственной молекулы РНК, называемой полицистронным или полигенным транскриптом. Группа координированно экспрессирующихся генов называется опероном. Гены, кодирующие несколько родственных функций, не всегда образуют единый оперон. Так, гены, кодирующие 30S- и 50S-рибосомные белки, организованы во множественные оперoны, в чей состав иногда входят гены, кодирующие другие белки, которые участвуют в транскрипции иили трансляции. Как правило, отдельные опероны, кодирующие родственные функции, имеют одинаковые или сходные регуляторные последовательности и поэтому реагируют на определенный регуляторный сигнал сходным образом.

    22. Регуляция активности генов у эукариот

    Регуляция экспрессии генома у эукариот осуществляется на нескольких уровнях:
    - на уровне структурной организации генома претранскрипционный контроль Геном эукариот содержит много нуклеотидов, но лишь 2-5% ДНК используется для кодировки белков. Наличие у ДНК не только кодирующих, но и регуляторных сигнальных участков, значительного количества сайтов, которые не транскрибируются, составляет особенность генома эукариот. Обеспечивают стабильную экспрессию в течение жизни клетки одних генов и торможения экспрессии других.
    - на уровне транскрипции. Существует транскрипционная и посттранскрипционная регуляция. Регулироваться может сам процесс транскрипции, дозревание мРНК процессинг, транспорт и деградация мРНК. В участках гетерохроматина ДНК упакована очень плотно и недоступна для транскрипции, тогда как в участках эухроматина, имеющего рыхлую упаковку, доступна для РНК-полимеразы. В разных типах клеток в область эухроматина попадают различные гены, а это означает, что в разных тканях транскрибируются различные гены.
    - на уровне трансляции – через фосфорилирование-дефосфорилирование белковых факторов трансляции.
    - на пострансляционном уровне – через регуляцию процессов формирования белковой молекулы, ее транспорта, активности и деградации.


    3. Генетика

    23.Генный уровень организации наследственного материала

    Геном человека — это полная генетическая система, ответственная за происхождение, развитие, воспроизводство и наследование всех структурных и функциональных особенностей организма. Структурной и функциональной единицей генома является ген. Генные взаимодействия происходят на нескольких уровнях: непосредственно в генетическом материале клеток, между и РНК и образующимися полипептидами в процессе биосинтеза белка, между белками-ферментами одного метаболического цикла. Взаимодействие аллельных генов обусловливает доминантное, рецессивное, кодоминантное наследование признаков, явление неполного доминирования. При перечисленных формах доминирования результаты взаимодействия генов проявляются во всех соматических клетках организма. При эпистазе модулирующее действие заключается в подавлении одними генами функции других генов. Гены, оказывающие такой эффект, называются ингибиторами или супрессорами. Гены, усиливающие функции других генов, называются интенсификаторами. Экспрессивность и пенетрантность отражают зависимость функции гена от особенностей генотипа и проявляются в процессе развития признака. Следовательно, в основе этих генетических явлений может лежать колебание активности самих генов, характер взаимодействия продуктов генной активности, особое сочетание условий среды в онтогенезе организма.

    24. Ген, как функциональная единица наследственности, его свойства. Основные положения теории гена, свойства гена.

    Ген- это элементарный материальный наследственный фактор, определяющий строение белковой полипептидной цепи. Это участок ДНК, кодирующий развитие отдельного признака. В гаплоидном наборе хромосом имеется только один ген, ответственный за развитие данного признака. В диплоидном наборе хромосом содержатся 2 гомологичные хромосомы и значит 2 гена определяют развитие какого-либо признака. Гены, расположенные в одних и тех же локусах гомологичных хромосом и ответственные за развитие одного признака, называются аллельными.
    Доминантный ген — преобладающий, подавляет проявление других аллелей; обозначается большой буквой латинского алфавита.
    Рецессивный — подавляемый ген, проявляется только в гомозиготном состоянии, обозначают маленькой буквой
    Генотип — совокупность генов данного организма. Но часто под генотипом понимают одну или две пары аллелей гомозиготы или гетерозиготы.


    1   2   3   4   5   6   7   8   9   ...   20


    написать администратору сайта