Главная страница

Химия. Физикохимические основы газогидратного выделения ксенона и диоксида углерода из метансодержащих газовых смесей


Скачать 3.02 Mb.
НазваниеФизикохимические основы газогидратного выделения ксенона и диоксида углерода из метансодержащих газовых смесей
АнкорХимия
Дата04.02.2023
Размер3.02 Mb.
Формат файлаpdf
Имя файлаdiss-Kudryavtseva-1313.pdf
ТипДиссертация
#919313
страница13 из 14
1   ...   6   7   8   9   10   11   12   13   14
72. Mainusch S. et al. Experimental determination and modeling of methane hydrates in mixtures of acetone and water // J. Chem. Eng. Data. - 1997. - Vol. 42, № 5. - P. 948-950.

151 73. Liao Z. et al. Experimental and modeling study on phase equilibria of semiclathrate hydrates of tetra-n-butyl ammonium bromide + CH
4
, CO
2
, N
2
, or gas mixtures // Ind. Eng. Chem. Res. - 2013.
- Vol. 52, № 51. - P. 18440-18446.
74. Wenji S. et al. Experimental investigation on TBAB clathrate hydrate slurry flows in a horizontal tube: Forced convective heat transfer behaviors // Int. J. Refrig. - 2009. - Vol. 32, № 7. - P. 1801-
1807.
75. Li X.-S. et al. Gas hydrate formation process for capture of carbon dioxide from fuel gas mixture
// Ind. Eng. Chem. Res. - 2010. - Vol. 49, № 22. - P. 11614-11619.
76. Jin Y., Kida M., Nagao J. Phase equilibrium conditions for clathrate hydrates of tetra-n- butylammonium bromide (TBAB) and xenon // J. Chem. Eng. Data. - 2012. - Vol. 57, № 6. - P.
1829-1833.
77. Fan S. et al. Semiclathrate hydrate phase equilibrium for CO
2
/CH
4
gas mixtures in the presence of tetrabutylammonium halide (bromide, chloride, or fluoride) // J. Chem. Eng. Data. - 2013. -
Vol. 58, № 11. - P. 3137-3141.
78. Shi L., Liang D. Semiclathrate hydrate phase behaviour and structure for CH
4
in the presence of tetrabutylammonium fluoride (TBAF) // J. Chem. Thermodyn. - 2019. - Vol. 135. - P. 252-259.
79. Shi L.L., Liang D.Q., Wu N.Y. Phase equilibrium data of the double tetrabutylammonium chloride plus carbon dioxide or nitrogen semiclathrate hydrate // J. Chem. Eng. Data. - 2014. Vol.
59, № 7. - P. 2320-2323.
80. Rodionova T. et al. Calorimetric and structural studies of tetrabutylammonium chloride ionic clathrate hydrates // J. Phys. Chem. B. - 2010. - Vol. 114, № 36. - P. 11838-11846.
81. Li X.-S. et al. Effects of tetrabutyl-(ammonium/phosphonium) salts on clathrate hydrate capture of CO
2
from simulated flue gas // Energy Fuels. - 2012. - Vol. 26, № 4. - P. 2518-2527.
82. Aki S.N.V.K. et al. High-pressure phase behavior of carbon dioxide with imidazolium-based ionic liquids // J. Phys. Chem. B. - 2004. - Vol. 108, № 52. - P. 20355-20365.
83. Makogon T.Y., Mehta A.P., Sloan E.D. Structure H and structure I hydrate equilibrium data for
2,2-dimethylbutane with methane and xenon // J. Chem. Eng. Data. - 1996. - Vol. 41, № 2. - P.
315-318.
84. Lee Y., Kim Y., Seo Y. Enhanced CH
4
recovery induced via structural transformation in the
CH
4
/CO
2
replacement that occurs in sH hydrates // Environ. Sci. Technol. - 2015. - Vol. 49, № 14. - P. 8899-8906.
85. Khokhar A.A., Gudmundsson J.S., Sloan E.D. Gas storage in structure H hydrates // Fluid Phase
Equilib. - 1998. - Vol. 150, № 151. - P. 383-392.
86. Kumar R. et al. Structure and kinetics of gas hydrates from methane/ethane/propane mixtures relevant to the design of natural gas hydrate storage and transport facilities // AIChE J. - 2008. -

152
Vol. 54, № 8. - P. 2132-2144.
87. Nixdorf J., Oellrich L.R. Experimental determination of hydrate equilibrium conditions for pure gases, binary and ternary mixtures and natural gases // Fluid Phase Equilib. - 1997. - Vol. 139, № 1-2. - P. 325-333.
88. Babu P., Kumar R., Linga P. Medium pressure hydrate based gas separation (HBGS) process for pre-combustion capture of carbon dioxide employing a novel fixed bed reactor // Int. J. Greenh.
Gas Control. - 2013. - Vol. 17. - P. 206-214.
89. Zhang J.S., Lee J.W. Equilibrium of hydrogen + cyclopentane and carbon dioxide + cyclopentane binary hydrates // J. Chem. Eng. Data. - 2009. - Vol. 54, № 2. - P. 659-661.
90. Zhang Y. et al. Differential scanning calorimetry studies of clathrate hydrate formation // J. Phys.
Chem. B. - 2004. - Vol. 108, № 43. - P. 16717-16722.
91. Herslund P.J. et al. Measuring and modelling of the combined thermodynamic promoting effect of tetrahydrofuran and cyclopentane on carbon dioxide hydrates // Fluid Phase Equilib. - 2014. -
Vol. 381. - P. 20-27.
92. Mohammadi A.H., Richon D. Phase equilibria of clathrate hydrates of methyl cyclopentane, methyl cyclohexane, cyclopentane or cyclohexane+carbon dioxide // Chem. Eng. Sci. - 2009. -
Vol. 64, № 24. - P. 5319-5322.
93. Han S., Rhee Y.W., Kang S.P. Investigation of salt removal using cyclopentane hydrate formation and washing treatment for seawater desalination // Desalination. - 2017. - Vol. 404. - P. 132-137.
94. Mooijer-van den Heuvel M.M., Witteman R., Peters C.J. Phase behaviour of gas hydrates of carbon dioxide in the presence of tetrahydropyran, cyclobutanone, cyclohexane and methylcyclohexane // Fluid Phase Equilib. - 2001. - Vol. 182, № 1-2. - P. 97-110.
95. Zhong D.L. et al. Phase equilibria of clathrate hydrates formed with CH
4
+ N
2
+ O
2
in the presence of cyclopentane or cyclohexane // J. Chem. Eng. Data. - 2012. - Vol. 57, № 12. - P. 3751-3755.
96. Sun Z.G. et al. Equilibrium hydrate formation conditions for methylcyclohexane with methane and a ternary gas mixture // Fluid Phase Equilib. - 2002. - Vol. 198, № 2. - P. 293-298.
97. Mohammadi A.H., Richon D. Phase equilibria of binary clathrate hydrates of nitrogen+cyclopentane/cyclohexane/methyl cyclohexane and ethane+cyclopentane/cyclohexane/methyl cyclohexane // Chem. Eng. Sci. - 2011. - Vol. 66, № 20. - P. 4936-4940.
98. Ohmura R. et al. Clathrate hydrate formation in the system methane + 3-methyl-1-butanol + water: Equilibrium data and crystallographic structures of hydrates // Fluid Phase Equilib. - 2004.
- Vol. 221, № 1-2. - P. 151-156.
99. Sinehbaghizadeh S., Javanmardi J., Mohammadi A.H. Phase stability conditions of clathrate hydrates in the (methane + 3-methyl-1-butanol + water), (methane + 3,3-dimethyl-2-butanone +

153 water) and (methane + 2,3-dimethyl-2-butene + water) systems: Experimental measurements and thermodynamic modeling // J. Chem.Thermodyn. - 2018. - Vol. 125. - P. 64-70.
100. Shin H.J. et al. Thermodynamic stability, spectroscopic identification and cage occupation of binary CO
2
clathrate hydrates // Chem. Eng. Sci. - 2009. - Vol. 64, № 24. - P. 5125-5130.
101. Luo Y. et al. Effects of dimethyl sulfoxide on phase equilibrium conditions of CO
2
and IGCC fuel gas hydrate in the presence and absence of tetra-n-butyl ammonium bromide // J. Chem. Eng.
Data. - 2017. - Vol. 62, № 1. - P. 188-193.
102. Xia Z. et al. Hydrate-based capture CO
2
and purification CH
4
from simulated landfill gas with synergic additives based on gas solvent // Energy Procedia. - 2014. - Vol. 61. - P. 450-454.
103. Xia Z. et al. Hydrate-based CO
2
capture and CH
4
purification from simulated biogas with synergic additives based on gas solvent // Appl. Energy. - 2016. - Vol. 162. - P. 1153-1159.
104. Sales Silva L.P. et al. Phase behavior of simple tributylphosphine oxide (TBPO) and mixed gas
(CO
2
, CH
4
and CO
2
+ CH
4
) + TBPO semiclathrate hydrates // J. Chem.Thermodyn. - 2016. - Vol.
102. - P. 293-302.
105. Mofrad H.R. et al. Rapid formation of dry natural gas hydrate with high capacity and low decomposition rate using a new effective promoter // J. Pet. Sci. Eng. - 2016. - Vol. 147. - P. 756-
759.
106. Lin W. et al. Effect of surfactant on the formation and dissociation kinetic behavior of methane hydrate // Chem. Eng. Sci. - 2004. - Vol. 59, № 21. - P. 4449-4455.
107. Zhang J.S. et al. Adsorption of sodium dodecyl sulfate at THF hydrate/liquid interface // J. Phys.
Chem. C. - 2008. - Vol. 112, № 32. - P. 12381-12385.
108. He Y. et al. Surfactant-based promotion to gas hydrate formation for energy storage // J. Mater.
Chem. A. - 2019. - Vol. 7. - P. 21634-21661.
109. Karimi R. et al. Effects of different surfactants on the kinetics of ethane-hydrate formation: experimental and modeling studies // Energy Technol. - 2013. - Vol. 1, № 9. - P. 530-536.
110. Li J. et al. Experiments on fast nucleation and growth of HCFC-141b gas hydrate in static water columns // Int. J. Refrig. - 2004. - Vol. 27, № 8. - P. 932-939.
111. Okutani K., Kuwabara Y., Mori Y.H. Surfactant effects on hydrate formation in an unstirred gas/liquid system: An experimental study using methane and sodium alkyl sulfates // Chem. Eng.
Sci. - 2008. - Vol. 63, № 1. - P. 183-194.
112. Yoslim J., Linga P., Englezos P. Enhanced growth of methane–propane clathrate hydrate crystals with sodium dodecyl sulfate, sodium tetradecyl sulfate, and sodium hexadecyl sulfate surfactants
// J. Cryst. Growth. - 2010. - Vol. 313, № 1. - P. 68-80.
113. Limvisitsakul S. et al. Effects of tetrahydrofuran and cetyltrimethylammonium bromide on carbon dioxide hydrate formation // Chem.Eng. Trans. - 2016. - Vol. 52. - P. 157-162.

154 114. Firoozabadi S.R., Mohammad B. A comparative study on the effects of Fe
3
O
4
nanofluid, SDS and CTAB aqueous solutions on the CO
2
hydrate formation // J. Mol. Liq. - 2020. - Vol. 300:
112251.
115. Fang K. et al. Properties of the nanoscale hydrophilic cationic pigment based on quaternary surfactant // J. Dispers. Sci. Technol. - 2008. - Vol. 29, № 1. - P. 52-57.
116. Li X.S. et al. Tetra-n-butyl ammonium bromide semi-clathrate hydrate process for post- combustion capture of carbon dioxide in the presence of dodecyl trimethyl ammonium chloride
// Energy. - 2010. - Vol. 35, № 9. - P. 3902-3908.
117. Du J., Li H., Wang L. Effects of ionic surfactants on methane hydrate formation kinetics in a static system // Adv. Powder Technol. - 2014. - Vol. 25, № 4. - P. 1227-1233.
118. Link D.D. et al. Formation and dissociation studies for optimizing the uptake of methane by methane hydrates // Fluid Phase Equilib. - 2003. - Vol. 211, № 1. - P. 1-10.
119. Zhang B.-Y., Wu Q., Sun D.-L. Effect of surfactant Tween on induction time of gas hydrate formation // J. China Univ. Min. Technol. - 2008. - Vol. 18, № 1. - P. 18-21.
120. Karimi R., Varaminian F., Izadpanah A.A. Study of ethane hydrate formation kinetics using the chemical affinity model with and without presence of surfactants // J. Non-Equilib. Thermodyn.
- 2014. - Vol. 39, № 4. - P. 219-229.
121. Dicharry C. et al. Carbon dioxide gas hydrate crystallization in porous silica gel particles partially saturated with a surfactant solution // Chem. Eng. Sci. - 2013. - Vol. 98. - P. 88-97.
122. Mohammadi A., Jodat A. Investigation of the kinetics of TBAB + carbon dioxide semiclathrate hydrate in presence of tween 80 as a cold storage material // J. Mol. Liq. - 2019. - Vol. 293:
111433.
123. Veluswamy H.P. et al. An innovative approach to enhance methane hydrate formation kinetics with leucine for energy storage application // Appl. Energy. - 2017. - Vol. 188. - P. 190-199.
124. Liu Y. et al. Methane storage in a hydrated form as promoted by leucines for possible application to natural gas transportation and storage // Energy Technol. - 2015. - Vol. 3, № 8. - P. 815-819.
125. Mohammadi A. et al. Kinetic study of carbon dioxide hydrate formation in presence of silver nanoparticles and SDS // Chem. Eng. J. - 2014. - Vol. 237. - P. 387-395.
126. Zhou S.D. et al. Effect of graphite nanoparticles on promoting CO
2
hydrate formation // Energy
Fuels. - 2014. - Vol. 28, № 7. - P. 4694-4698.
127. Yan J. et al. Enhanced methane recovery from low-concentration coalbed methane by gas hydrate formation in graphite nanofluids // Energy. - 2019. - Vol. 180. - P. 728-736.
128. Yi J. et al. Impacts of the surfactant sulfonated lignin on hydrate based CO
2
capture from a
CO
2
/CH
4
gas mixture // Energy. - 2019. - Vol. 171. - P. 61-68.
129. Linga P. et al. Enhanced rate of gas hydrate formation in a fixed bed column filled with sand

155 compared to a stirred vessel // Chem. Eng. Sci. - 2012. - Vol. 68, № 1. - P. 617-623.
130. Adeyemo A. et al. Capture of carbon dioxide from flue or fuel gas mixtures by clathrate crystallization in a silica gel column // Int. J. Greenh. Gas Control. - 2010. - Vol. 4, № 3. - P. 478-
485.
131. Kang S.P., Lee J., Seo Y. Pre-combustion capture of CO
2
by gas hydrate formation in silica gel pore structure // Chem. Eng. J. - 2013. - Vol. 218. - P. 126-132.
132. Kang S.P., Seo Y., Jang W. Kinetics of methane and carbon dioxide hydrate formation in silica gel pores // Energy Fuels. - 2009. - Vol. 23, № 7. - P. 3711-3715.
133. Kang S.P., Lee J.W., Ryu H.J. Phase behavior of methane and carbon dioxide hydrates in meso- and macro-sized porous media // Fluid Phase Equilib. - 2008. - Vol. 274, № 1-2. - P. 68-72.
134. Zhou X. et al. Replacement of methane from quartz sand-bearing hydrate with carbon dioxide-in- water emulsion // Energy Fuels. - 2008. - Vol. 22, № 3. - P. 1759-1764.
135. Waite W.F. et al. Thermal conductivity measurements in porous mixtures of methane hydrate and quartz sand // Geophys. Res. Lett. - 2002. - Vol. 29, № 24. - P. 82-1-82-4.
136. Binks B.P., Murakami R. Phase inversion of particle-stabilized materials from foams to dry water
// Nat. Mater. - 2006. - Vol. 5. - P. 865-869.
137. Wang W. et al. Methane storage in dry water gas hydrates // J. Am. Chem. Soc. - 2008. - Vol.
130, № 35. - P. 11608-11609.
138. Zhang Q. et al. Effect of dry water on methane separation and recovery from coal mine gas based on hydrate // RSC Adv. - 2018. - Vol. 8, № 48. - P. 27171-27180.
139. Rossi F., Filipponi M., Castellani B. Investigation on a novel reactor for gas hydrate production
// Appl. Energy. - 2012. - Vol. 99. - P. 167-172.
140. Takahashi M. et al. Effect of shrinking microbubble on gas hydrate formation // J. Phys. Chem.
B. - 2003. - Vol. 107, № 10. - P. 2171-2173.
141. Zhong Y., Rogers R.E. Surfactant effects on gas hydrate formation // Chem. Eng. Sci. - 2000. -
Vol. 55, № 19. - P. 4175-4187.
142. Park S.S., Kim N.J. Study on methane hydrate formation using ultrasonic waves // J. Ind. Eng.
Chem. - 2013. - Vol. 19, № 5. - P. 1668-1672.
143. Sun S. Dynamics research on natural gas storage and transportation by gas hydrates // Asia-Pacific
Power and Energy Engineering Conference. - 2009. - P. 1-4.
144. Shu B. et al. Influences of different types of magnetic fields on HCFC-141b gas hydrate formation processes // Sc. China Ser. B-Chem. - 2004. - Vol. 47. - P. 428-433.
145. Katz D.L. Prediction of conditions for hydrate formation in natural gases // Trans. AIME. - 1945.
- Vol. 160, № 01. - P. 140-149.
146. Wilcox W.I., Carson D.B., Katz D.L. Natural gas hydrates // Ind. Eng. Chem. - 1941. - Vol. 33,

156
№ 5. - P. 662-665.
147. von Stackelberg M., Jahns W. Feste Gashydrate. VI Die Gitteraufweitungsarbeit // Z.
Elektrochem. - 1954. - Vol. 58. - P. 162-164.
148. Barrer R.M., Stuart W.I. Non-stoicheiometric clathrate compounds of water // Proc. R. Soc. Lond.
A. - 1957. - Vol. 243, № 1233. - P. 172-189.
149. Van der Waals J.H., Platteeuw J.C. Clathrate solutions // Adv. Chem. Phys. - 1959. - Vol. 2. - P.
1-57.
150. Platteeuw J.C., van der Waals J.H. Thermodynamic properties of gas hydrates // Mol. Phys. -
1958. - Vol. 1, № 1. - P. 91-96.
151. Мелвин-Хьюз Э.А. Физическая химия. - М.: Издательство иностранной литературы, 1962.
- 1147 с.
152. Holder G.D., John V.T. Thermodynamics of multicomponent hydrate forming mixtures // Fluid
Phase Equilib. - 1983. - Vol. 14. - P. 353-361.
153. Saito S., Marshall D.R., Kobayashi R. Hydrates at high pressures: Part II. Application of statistical mechanics to the study of the hydrates of methane, argon, and nitrogen // AIChE J. - 1964. - Vol.
10, № 5. - P. 734-740.
154. Parrish W.R., Prausnitz J.M. Dissociation pressures of gas hydrates formed by gas mixtures //
Ind. Eng. Chem. Process Des. Dev. - 1972. - Vol. 11, № 1. - P. 26-35.
155. Lorentz H.A. Ueber die anwendung des satzes vom virial in der kinetischen theorie der gase //
Ann. Phys. - 1881. - Vol. 248, № 1. - P. 127-136.
156. Berthelot D. Sur le melange des gaz // Comptes rendus Hebd. des séances l’Académie des Sci. -
1898. - Vol. 126. - P. 1703-1855.
157. Holder G.D., Corbin G., Papadopoulos K.D. Thermodynamic and molecular properties of gas hydrates from mixtures containing methane, argon, and krypton // Ind. Eng. Chem. Fundam. -
1980. - Vol. 19, № 3. - P. 282-286.
158. Ballard A.L., Sloan E.D. The next generation of hydrate prediction: I. Hydrate standard states and incorporation of spectroscopy // Fluid Phase Equilib. - 2002. - Vol. 194-197. - P. 371-383.
159. Ballard A.L., Sloan E.D. The next generation of hydrate prediction: Part III. Gibbs energy minimization formalism // Fluid Phase Equilib. - 2004. - Vol. 218, № 1. - P. 15-31.
160. Avlonitis D. A scheme for reducing experimental heat capacity data of gas hydrates // Ind. Eng.
Chem. Res. - 1994. - Vol. 33, № 12. - P. 3247-3255.
161. Aspen physical property system V 8.4. - Burlington, 2013. - 248 p.
162. Девятых Г.Г., Еллиев Ю.Е. Глубокая очистка веществ: 2-е изд. - М.: Высшая школа, 1990.
- 192 с.
163. Sergeeva M. et al. Xenon recovery from natural gas by multiple gas hydrate crystallization: a

157 theory and simulation // Sep. Sci. Technol. - 2020. - Vol. 55, № 1. - P. 144-154.
164. Воротынцев В.М. и др. Разделение газовых смесей методом газогидратной кристаллизации
// Теор. осн. хим. технол. - 2001. - Т. 35, № 2. - С. 128-132.
165. Воротынцев В.М., Малышев В.М. Газовые гидраты: наноразмерные фазы в процессах разделения и очистки веществ методом кристаллизации // Успехи химии. - 2011. - Т. 80, № 10. - С. 971-991.
166. Khurana M. et al. Thermodynamic and kinetic modelling of mixed CH
4
-THF hydrate for methane storage application // Chem. Eng. J. - 2019. - Vol. 370. - P. 760-771.
167. Torré J.-P. et al. CO
2
capture by hydrate formation in quiescent conditions: In search of efficient kinetic additives // Energy Procedia. - 2011. - Vol. 4. - P. 621-628.
1   ...   6   7   8   9   10   11   12   13   14


написать администратору сайта