Главная страница
Навигация по странице:

  • pbac108l

  • Характеристика агробактерий, инфицирование растений. Agrobacterium

  • Характеристика Ti плазмид и Т-ДНК. Ti-плазми́да

  • Использование агробактерий для введения чужеродных генов.

  • Векторы на основе ДНК-содержащих вирусов растений

  • биотехнология. Вопросы Биотехнология. Генетическая инженерия растений, ее сущность и задачи


    Скачать 480.5 Kb.
    НазваниеГенетическая инженерия растений, ее сущность и задачи
    Анкорбиотехнология
    Дата25.06.2022
    Размер480.5 Kb.
    Формат файлаdoc
    Имя файлаВопросы Биотехнология.doc
    ТипРеферат
    #615170
    страница2 из 4
    1   2   3   4

    Фаговые векторы, космиды, BAC- и YAC- векторы.


    Фаговые векторы позволяют клонировать фрагменты ДНК длиной 15–25 т. П.о. Однако этого явно недостаточно, чтобы клонировать целиком многие гены животных и растений, длина которых зачастую превышает 35–40 т. П.о. Требуемой емкостью обладают векторные молекулы, называемые космидами. Космиды представляют собой небольшие плазмиды, в которые in vitro введены cos-сайты ДНК фага l. В ДНК нормальных фаговых частиц cos-сайты расположены на концах молекул, они разделяют мономеры фаговой ДНК в конкатемерах, объединяющих несколько соединенных «голова к хвосту» мономеров, которые являются предшественниками зрелых фаговых ДНК перед упаковкой в фаговые частицы. В таких конкатемерах соседние cos-сайты располагаются на расстоянии 35–45 т. П.о. Друг от друга и заключают между собой весь фаговый геном. Таким образом, наличие cos-сайтов в ДНК является, по существу, единственным необходимым условием упаковываемости ДНК в фаговые частицы. Это означает, что последовательность нуклеотидов l-ДНК, расположенная между двумя cos-сайтами, которая заключает в себе весь фаговый геном (35–45 т. П.о.), может быть замещена in vitro на аналогичный по длине (38–52 т. П.о.) Фрагмент чужеродной ДНК и эффективно упакована в фаговые частицы (такова максимальная емкость головки фага). Естественно, что такая искусственная фаговая частица оказывается нежизнеспособной. Стадия упаковки ДНК космид в фаговые частицы используется лишь для облегчения процесса введения рекомбинантных ДНК большого размера внутрь бактериальных клеток. Такой процесс имитирует проникновение фаговой хромосомы в бактерии во время фаговой инфекции. В случае космид сходство между их проникновением в бактериальные клетки и фаговой инфекцией на этом заканчивается. Однако сходство является более глубоким в случае векторов, называемых фазмидами. Фазмиды представляют собой векторные молекулы ДНК, которые содержат в себе генетические элементы плазмид и хромосом бактериофагов. Они могут обладать емкостью в отношении клонируемой ДНК, характерной для l-векторов, и существовать в определенных условиях в бактериальных клетках в виде плазмиды или же упаковываться в фаговые частицы in vivo при изменении этих условий.

    Сверхъемкие векторы YAC, BAC

    Мини-хромосомы дрожжей YAC представляют собой кольцевые молекулы ДНК, содержащие большинство вышеупомянутых генетических элементов, которые позволяют им стабильно существовать во внехромосомном состоянии в клетках дрожжей. Векторы семейства YAC являются челночными, т. Е. Обладают последовательностями нуклеотидов, необходимыми для их репликации в бактериальных клетках. Векторы YAC, содержащие клонируемые последовательности, существуют в среднем в виде одной копии на клетку, и даже в отсутствие селектирующих условий утрачиваются с очень низкой частотой (10-3-10-5 за клеточную генерацию). При увеличении общего размера вектора до 140 т. П.о. И выше, частота потери его молекул не превышает таковую, характерную для обычных хромосом дрожжей.

    Для преодоления трудностей, возникающих при использовании искусственных хромосом дрожжей, были сконструированы альтернативные векторные системы, среди которых наиболее популярными в настоящее время являются системы, основанные на искусственных хромосомах бактерий – BAC (bacterial artificial chromosome). В векторных системах BAC используется ДНК полового фактора (F-фактораE. Coli – гигантской плазмиды мужских бактериальных клеток, которые являются донорами бактериальной ДНК при конъюгации с женскими клетками (рис.). Типичный F-фактор содержит гены oris, repe, para и parb, регулирующие его собственную репликацию и контролирующие число его копий в бактериальных клетках. В частности, гены oris и repe обеспечивают однонаправленную репликацию F-фактора, а гены para и parb поддерживают число его копий на уровне одной-двух на бактериальную клетку. Классический вектор BAC (pbac108l) включает в себя все эти гены, а также ген устойчивости к хлорамфениколу, используемый в качестве селектируемого маркера. Вектор содержит также фрагмент ДНК, по которому производится клонирование. В этом фрагменте имеются типичный полилинкер, а также два уникальных сайта рестрикции hindiii и bamhi, фланкированные промоторами T7- и Sp6-РНК-полимераз. Такие промоторы могут быть использованы для получения РНК-зондов, необходимых для осуществления «прогулок по хромосомам», а также прямого секвенирования клонированной ДНК в месте стыковки с вектором.


    1. Характеристика агробактерий, инфицирование растений.

    Agrobacterium (лат.) — группа грамотрицательных бактерий, впервые выделенная как самостоятельный род Г. Дж. Конном в 1942 году. Представители рода способны к горизонтальному переносу генов при помощи которого вызывают опухоли у растений. Наиболее исследованным и хорошо изученным видом этого рода является Agrobacterium tumefaciensAgrobacterium широко известен своей способностью осуществлять взаимообратный перенос ДНК между собой и растениями. Благодаря этому свойству представители этого рода стали важным инструментом генной инженерии.

    Род Agrobacterium гетерогенен по своему составу. В 1998 году была проведена реклассификация, в результате которой всех представителей Agrobacterium разделили на четыре новых рода: AhrensiaPseudorhodobacterRuegeria и Stappia. Однако, более поздние исследования 2001—2003 годов пришли к выводу, что большую часть видов следует причислить к роду Rhizobium

    A. tumefaciens вызывает образование у растений злокачественных опухолей — галл. Обычно они возникают в месте смыкания корня и побега. Такие опухоли возникают в результате конъюгационного переноса бактериальной Ti-плазмиды (Т-ДНК) в клетки растения. Близкородственный вид A. rhizogenes также вызывает корневые опухоли и обладает специальной Ri-плазмидой (англ. root-inducing — индуцирующая корни). Хотя таксономическое положение Agrobacterium постоянно пересматривается, всё же можно разделить этот род на три биовараA. tumefaciensA. rhizogenes и A. vitis. Штаммы в группе A. tumefaciens и A. rhizogenes могут обладать либо Ti либо Ri-плазмидой, в то время как штаммы из группы A. vitis, обычно поражающие только виноград, несут Ti-плазмиду. Из природных образцов были выделены штаммы не относящиеся к Agrobacterium, которые несли Ri-плазмиду, а лабораторные исследования показали, что штаммы не относящиеся к Agrobacterium также могут нести Ti-плазмиду. Многие природные штаммы Agrobacterium не обладают ни Ti ни Ri-плазмидой и, поэтому, не являются вирулентными.

    Плазмидная T-ДНК полуслучайным образом внедряется в геном клетки хозяина[6], и происходит экспрессия генов, ответственных за образование опухоли, что в конечном итоге приводит к образованию галла. T-ДНК содержит гены, кодирующие ферменты, необходимые для синтеза нестандартных аминокислот, обычно октопина или нопалина. Здесь же закодированы ферменты для синтеза растительных гормонов ауксина и цитокинина, а также для биосинтеза разного рода опинов, которые обеспечивают бактериям источник углерода и азота, недоступный для других микроорганизмов. Такая стратегия даёт Agrobacterium селективное преимущество[7]. Изменение гормонального баланса растения, приводит к нарушению деления клеток и образованию опухоли. Соотношение ауксина к цитокину определяет морфологию опухоли (корнеобразная, бесформенная или побегообразная).


    1. Характеристика Ti плазмид и Т-ДНК.

    Ti-плазми́да (англ. Ti plasmid от англ. tumor inducing — индуцирующая образование опухолей) — плазмида почвенной бактерии Agrobacterium tumefaciens, с помощью которой она вызывает опухоли у растений. Участок Ti-плазмиды, известный как T-ДНК[en] (от англ. transfer DNA), может встраиваться в геном растений и содержит гены биосинтеза фитогормонов и опинов[en], которые запускают образование опухоли.

    Ti-плазмида представляет собой кольцевую[en] двуцепочечную молекулу ДНК, состоящую из 214 233 пар оснований (п. о.) и содержащую 199 генов. В состав плазмиды входит участок длиной от 12 до 22 тысяч п. о., известный как T-ДНК, который может интегрироваться в геном растения. Шесть генов, локализованных в T-ДНК — iaaM1, iaaH2, ipt, tml6, 6a, 6b, — отвечают за биосинтез опинов и некоторых фитогормонов, причём гены iaaM, iaaH2 и ipt являются онкогенамиЭкспрессия этих генов запускает образование опухоли — клубенька на корне заражённого растения.

    Помимо T-ДНК, в состав Ti-плазмиды входит область vir, представленная опероном virABCDEFG. Гены vir отвечают за вырезание и перенос T-ДНК в клетки растения. Ген virA кодирует рецептор (гистидинкиназу[en]), который реагирует на такие фенольные соединения, как ацетосирингон[en]сирингальдегид[en] и апоцинин, которые выходят наружу из повреждённых клеток растения. Ген virB кодирует белки, образующие подобие пилей, продукт гена virC связывается с последовательностью, которая будет перенесена, а белки, кодируемые генами virD1 и virD2, являются эндонуклеазами, которые распознают прямые повторы на концах T-ДНК и вносят разрезы в этих областях при участии вспомогательного белка virD4. Продукт гена virE опосредует собственно перенос T-ДНК в растительную клетку, а белок, кодируемый геном virG, запускает экспрессию генов vir, после того как его фосфорилирует активированный белок virA.

    Также Ti-плазмида содержит гены переработки опинов и tra-область, которая обеспечивает конъюгативный перенос плазмиды между двумя бактериями[7].

    Внедрение T-ДНК в растительный геном протекает в четыре этапа:

    • формирование контакта между бактерией и стенкой растительной клетки;

    • проникновение T-ДНК внутрь клетки растения;

    • встраивание T-ДНК в растительный геном;

    • экспрессия генов T-ДНК в растительной клетке.

    T-ДНК может попасть внутрь растения только в месте повреждения ввиду особенностей рецептора virA, описанных выше. Кроме того, на проникновение влияет кислотность окружающей среды и температура. Проникновение T-ДНК опосредовано особыми T-пилями, которые в виде пучка тонких гибких фибрилл располагаются на одном из полюсов бактериальной клетки. Вырезание и интеграцию T-ДНК в растительный геном опосредуют продукты генов vir. Процесс переноса T-ДНК в цитоплазму бактериальной клетки занимает 30 минут, причём сама бактерия внутрь растительной клетки не попадает, а находится в межклеточном пространстве и использует инфицированные T-ДНК клетки в качестве поставщика опинов, которые служат источником углерода и азота для бактерии. В индукции экспрессии генов вирулентности также задействованы особые внутриклеточные метаболиты растения, образующиеся при раневых повреждениях.



    1. Использование агробактерий для введения чужеродных генов.

    Самый эффективный метод переноса генов в растения — использование в качестве вектора почвенной бактерии Agrobacterium tumefaciens. Эта бактерия содержит плазмиду, в которую можно встроить необходимый для переноса ген. Agrobacterium tumefaciens заражает большинство двудольных растений и вызывает у них образование больших наростов, называемых корончатыми галлами, которые представляют собой подобие раковой опухоли (рис. 25.13). В норме в ответ на повреждение растение выделяет химические вещества, стимулирующие клеточное деление; при этом образуется группа клеток, называемых каллусом, которые быстро закрывают рану. Химические вещества, выделяемые поврежденными клетками растения, стимулируют и клетки Agrobacterium, которые заражают рану и вызывают образование галла. Этот процесс контролируется бактериальной плазмидой (Ti-плазмида; от англ. tumor-inducing). Она проникает в растительную клетку и встраивается в ДНК растения. Это приводит к нерегулируемому росту. Сама бактерия не попадает в клетки, но может жить между ними, используя питательные вещества, которые производят растительные клетки под контролем плазмидной ДНК. Клетки растений, содержащие встроенную в их геном Ti-плазмиду с чужеродным геном, называются трансформированными.

    К сожалению этот метод долгое время был неприменим к однодольным растениям, к которым относятся такие важные сельскохозяйственные культуры, как кукуруза и пшеница. Однако сейчас эта проблема решена. Метод трансформации используется для улучшения сортов томатов, картофеля и многих древесных растений.

    С помощью техники клонирования, описанной в разд. 21.3, из одной трансформированной клетки можно получить целое растение. Для этого клетки сначала выращивают в жидкой культуре, затем образовавшуюся недифференцированную массу, называемую каллусом, помещают на питательный агар. При правильном соотношении гормонов формируются побеги, корни и вырастает новое растение. Другой способ получения трансформированных растений подразумевает использование Agrobacterium. Диски, нарезанные из листьев, заражают бактерией и раскладывают на питательном агаре. В процессе роста трансформированные клетки формируют корни и побеги.



    Рис. 25.13 А. Введение нового гена в растительную клетку с помощью Agrobacterium. Б. Корончатый галл, образующийся при заражении раны бактерией Agrobacterium.

    Использование вирусов

    В генной инженерии бактерий роль векторов обычно играют бактериофаги (вирусы бактерий); вероятно, для трансформации растений можно использовать растительные вирусы.

    Использование «ружья»

    Неожиданно эффективным оказалось введение чужеродной ДНК в клетки растений с помощью специального ружья. Нужная ДНК упаковывается в золотые или вольфрамовые бусинки диаметром 1 мм. Их размещают на кончике пластиковой пули, которую вставляют в ствол специально сконструированного ружья. В первоначальном варианте пуля выстреливалась обычным способом, т. е. с помощью взрывного заряда, однако сейчас для выстрела используют сжатый газ. Пуля разрывается в камере на поверхности, имеющей микроскопические отверстия. Некоторые из частичек упакованной ДНК попадают через эти отверстия в мишень, которой являются растительные клетки или ткани. Выстрел производится в вакууме, поэтому частички ДНК не оседают. Они обнаруживаются в цитоплазме трансформированных клеток.



    1. Векторы на основе ДНК-содержащих вирусов растений


    Виру­сы можно рассматривать как разновидности чужеродной нуклеи­новой кислоты, которые реплицируются и экспрессируются в клет­ках растений. Подавляющее большинство фитовирусов в качестве носителя генетической информации содержат РНК. Только 1 — 2 % чирусов, инфицирующих растения, относятся к ДНК-содержа- щим. Именно эти вирусы удобны для использования в технологии Рекомбинантных ДНК, а также в качестве векторов.

    ДНК-содержащие вирусы могут включать одноцепочечную или двухцепочечную ДНК. В качестве представителей первой группы можно назвать вирус золотистой мозаики фасоли (ВЗМФ| или вирус полосатости кукурузы. Наиболее изученный представи­тель группы вирусов с двухцепечечной ДНК — вирус мозаики цветной капусты (ВМЦК), поражающий в основном растения’ семейства крестоцветные.

    Обычно фитовирусы реплицируются с образованием большое го числа копий молекул нуклеиновых кислот — 106 и более моле­кул на зараженную клетку. Поэтому фитовирусы представляют собой очень эффективные средства для получения хорошей экспрессии чуже­родного гена. Кроме высокой копийности вирусной нуклеиновой кислоты вирусные векторные системы имеют еще ряд преиму­ществ: малый размер генома (возможность легкой манипуляций вирусной ДНК) и сильные промоторы, обеспечивающие эффек­тивную экспрессию чужеродных генов.
    1   2   3   4


    написать администратору сайта