|
Грузоведение. Сохранность и крепление грузов. Грузоведение сохранность и крепление грузов
Многооборотная транспортная тара и ее эффективность. Применение многооборотной тары позволяет значительно снизить расходы материалов и трудовых ресурсов на подготовку груза к перевозке и хранению. Экономические преимущества многооборотной тары определяются условиями ее эксплуатации и в первую очередь числом оборотов в год. Как показали практика и теоретические исследования, многооборотная тара значительно экономичнее разовой для многих видов продукции при пяти и более оборотах в год.
Сферами рационального применения многооборотной тары являются внутригородские и внутриобластные перевозки продукции массового назначения, а также перевозки в рамках постоянных кооперированных или хозяйственных связей между поставщиками и потребителями продукции. При отсутствии постоянных связей между поставщиками и потребителями многооборотная тара может применяться только при достаточно больших объемах поставок, когда прибывшей с грузом тары в разобранном или сложенном
32
виде достаточно для комплектования отправки при возврате тары отправителю.
Для изготовления многооборотной тары применяют дерево, металлы, полимеры и др. Наиболее распространенной является деревянная многооборотная тара в виде разборных и складывающихся ящиков и специальных ящичных поддонов. Такая тара удобна в эксплуатации и имеет относительно небольшую собственную массу (12—20% массы груза). В машиностроении обычно используют металлическую многооборотную тару в виде специалы ных и стандартных ящичных и стоечных поддонов, которые успешно применяют для внутризаводских перевозок и многоярусного хранения на складах. Металлическая многооборотная тара используется также для перевозок грузов по кооперированным связям между отдельными предприятиями. Металлическая многооборотная тара отличается повышенной прочностью, надежностью и долговечностью, но имеет большую собственную массу (20—30% массы груза).
Все более широкое применение находит многооборотная жесткая полимерная тара, особенно для перевозки пищевых продуктов. Указанную тару отличают незначительная собственная масса (до 2—3% массы груза), удобство и простота санитарной обработки при повторном использовании.
Целесообразность применения многооборотной тары и рациональные расстояния перевозки грузов в такой таре определяются на основе допустимых транспортных расходов по возврату порожней тары.
В еличина допустимых транспортных расходов АС определяется разностью между стоимостью изготовления единицы новой тары одноразового использования и стоимостью изготовления единицы многооборотной тары, приходящейся на один оборот, с учетом затрат на ремонты:
a s> г> бП(* +#сл ви)
где Ср, Смн — стоимость изготовления соответственно разовой и многооборотной тары, руб.;
αо—поправочный коэффициент, равный отношению объемов разовой
и многооборотной тары;
β0 —коэффициент, учитывающий увеличение расходов на ремонт многооборотной тары за один оборот;
Nсл —срок службы тары, годы.
Таким образом, если ΔС≤О, применение многооборотной тары нецелесообразно. В случае когда ΔС>0, возникает вопрос по определению экономически обоснованного расстояния перевозки грузов в многооборотной таре. Расстояние определяют на основе общих допустимых транспортных расходов на перевозку партии порожней тары ΔСоби действующих тарифов на соответствующий вид перевозки. При этом общее количество единиц порожней та-
2 Зак. 1782 33
р ы в партии (отправке) зависит of вместимости подвижного состава. Общие допустимые, экономически оправданные транспортные расходы на перевозку партии порожней тары
где М — количество единиц порожней тары в отправке.
К возвратной таре относятся многие типы деревянной, фанерной, тонкостенной, картонной транспортной тары. Многие типы деревянной тары могут быть использованы без существенных ремонтов 2—3 раза. Однако часть деревянной тары в процессе перевозки повреждается и для повторного использования ее необходимо отремонтировать или переработать (переделать) на тару с другими параметрами. Например, в системе Госснаба СССР действует большая сеть специальных тароремонтных предприятий, осуществляющих сбор неисправной тары, ее ремонт и переработку, а затем возврат промышленным предприятиям для повторного использования.
Основными условиями эффективного использования многооборотной и возвратной тары являются четкое взаимодействие заинтересованных сторон, строгое выполнение нормативов оборачиваемости тары, хорошо организованный контроль и учет. В перспективе с увеличением объема упаковываемой продукции и улучшением организации возврата порожней тары повторное ее использование возрастет, а функции возвратной и многооборотной тары еще более сблизятся.
Прогрессивные тарные материалы и конструкции тары. Наиболее предпочтительными тарными материалами из группы древесных, с точки зрения экономии материальных ресурсов, являются тонкостенная дощечка, древесноволокнистая плита, картон, полимерные материалы.
Тонкостенная дощечка толщиной 4—5 мм используется для изготовления разовой и возвратной тары неразборной или разборно-складной конструкции. Преимуществами тонкостенной тары* сшитой или армированной проволокой, являются небольшая относительная масса, прочность и устойчивость к повышенной влажности. Сферой ее наиболее эффективного применения являются перевозки плодоовощной продукции на дальние расстояния. Производство такой тары позволяет получать экономию древесины до 40% по сравнению с традиционной дощатой. Улучшаются также объемные показатели тары (например, отношение внутреннего объема тары к внешнему), благодаря чему увеличивается использование вместимости транспортных средств, снижается стоимость тары, а также трудоемкость ее изготовления за счТет механизации процесса сборки. Разборро-складная конструкция тонкостенной тары позволяет использовать ее как возвратную до двухттрех раз.
Древесноволокнистые плиты применяются взамен досок для обшивки боковых и торцовых стенок крупногабаритной тары каркас-
34
ной и каркасно-щитовой конструкции. Такую тару целесообразно применять для перевозки изделий машиностроения массой до 10 т. При использовании 1 тыс. м2 древесноволокнистой плиты толщиной 3—4 мм достигается экономия примерно 14 м3 пиломатериалов. Еще большая экономия может быть получена при использовании древесноволокнистых плит взамен строганных досок для изготовления крупногабаритной тары в экспортном исполнении, когда к обработке поверхности тары предъявляются повышенные требования.
Тарный картон находит все более широкое применение для упаковывания и транспортирования самых различных грузов. Производство картонной тары отличается высоким уровнем механизации, что позволяет автоматизировать процесс упаковывания грузов. Картонная тара в сравнении с деревянной является более экономичной по таким показателям, как относительная собственная масса, стоимость, полезный объем, материало- и трудоемкость изготовления. К недостаткам тары относятся ее гигроскопичность и недостаточная прочность, ограничивающие сферу применения.
Для изготовления транспортной тары используется плоский и гофрированный картон, причем последний может быть двух-, трех-и пятислойным. Механическая прочность картона зависит от исходного материала, типа и размера гофр, а также от способа их образования (поперек или вдоль полотна бумаги). Способ продольного гофрирования, разработанный Всесоюзным научно-исследовательским и экспериментально-конструкторским институтом по таре и упаковке (ВНИЭКИТУ), позволяет увеличить торцовую жесткость картона с 43 до 54 Н/см, а сопротивление продавливанию — с 1,2 до 1,8 МПа. Кроме того, появилась возможность выпускать пятислойный гофрированный картон с перекрещивающимися направлениями гофр, что значительно увеличивает прочность тары.
Осваивается производство влагопрочного картона, обладающего повышенными физико-механическими свойствамл. Влагопроч-ность достигается пропиткой картона расплавами воска, парафина или склеиванием в особых условиях.
Спрос на картонную тару превышает объем ее производства. Поэтому для более экономичного использования картонной тары ее распределение осуществляется на основе коэффициента заменяемости Азам* который определяется отношением индивидуальной нормы расхода древесины круглого леса Нл, м3, к соответствующей норме расхода картона Нкт, т, или Нкм, м2, на упаковывание 1 т продукции: kзам=Нл/ Нкт; kзам = Нл/ Нкм. В первую очередь картонной тарой обеспечиваются те предприятия, у которых указанный коэффициент выше.
Картон используется для производства специальных картонно-навивных барабанов, заменяющих сухотарные бочки: каждая тысяча единиц такой тары экономит 23 м3 лесоматериалов. 2*
35 Капрен и резофан являются новыми прогрессивными материалами для изготовления транспортной тары. Капрен представляет собой комбинацию картона, бумаги и вспененных полимеров, придающих картону необходимую жесткость и прочность. Резофан — слоистый материал, состоит из двух слоев низкосортного шпона и запрессованной между ними резиновой прослойки. Прослойка изготовляется из отходов резино-кордового производства. Подбирая ее состав, можно получить нужные свойства как прослойки, так и и резофана в целом. Резофан может использоваться как листовой материал в качестве обшивки тары, из него можно изготовлять многооборотную тару, имеющую большой срок службы. Опытные перевозки грузов в таре из резофана подтвердили целесообразность его применения.
Полимерные материалы — полиэтилен, поливинилхлорид, полистирол, полипропилен и др.— находят все более широкое применение при изготовлении как потребительской, так и транспортной тары. Полимерная тара обладает рядом преимуществ: низкая относительная масса (0,5—2,0% массы груза), высокая прочность, эластичность, герметичность, химическая стойкость, простота утилизации.
Полимерная тара может быть жесткой, полужесткой и мягкой. Жесткую используют в основном как многооборотную. Она обладает высокой прочностью, удобна в эксплуатации, изготовляется самой различной формы. К полужесткой таре относятся различные бутылки, флаконы, баночки, используемые в основном как потребительская тара.
В пищевой и некоторых других отраслях промышленности для изготовления потребительской тары используется полимерная пленка в сочетании с бумагой, фольгой и другими материалами. Это значительно расширяет сферу применения полимерных пленок.
Наибольшее распространение получили мягкая полимерная тара в виде различных чехлов, мешков, пакетов, а также пленки для скрепления транспортных пакетов. Мягкая полимерная тара изготовляется из различных видов полимеров, насчитывающих более 20 наименований.
В общем объеме производства полимерной тары удельный вес пленок составляет 75%. Для скрепления тарно-штучных грузов в транспортном пакете применяют два вида полимерных пленок: термоусадочную и растягивающуюся. Применение термоусадочных пленок основано на их способности сокращаться под действием тепла. Пакет сначала обертывают пленкой, а затем нагревают; пленка натягивается и прочно скрепляет пакет. Перед нанесением на пакет растягивающейся пленки последняя растягивается внешней силой, а затем навивается на пакет. Величина внешней силы должна обеспечивать окончательное удлинение пленки не более чем на 20%; при таком усилии остаточных деформаций в пленке
36
не наблюдается. После снятия внешней силы пленка сокращается и скрепляет пакет. Полимерные пленки, используемые для скрепления пакетов, должны обладать достаточной прочностью, оптической прозрачностью, а также воспринимать типографскую краску для нанесения маркировки.
Гофропласт (пластмассовый картон) представляет собой профилированный материал из термопластичной массы, состоящей из двух гладких листов с вертикальными перемычками или гофрами между ними. Для изготовления гофропласта используют полиэтилен, полипропилен, полистирол и др. По конструкции гофропласт напоминает трехслойный картон, может применяться для изготовления тары любой формы: лотков, коробок, ящиков, чехлов, а также контейнеров и поддонов разового использования. Свойства гофропласта позволяют упаковывать в тару самую разнообразную продукцию пищевого и технического назначения. Гофропласт обладает высокой прочностью, легкостью, прозрачностью, высокой водо- и паронепроницаемостью, масло- и химстойкостью, кроме того, морозоустойчивостью, устойчивостью к гниению, развитию микрофлоры и т. д. Сдерживающими факторами развития производства тары из гофропласта являются высокая стоимость и дефицит исходного материала.
Стандартизация и унификация транспортной тары. Постоянный рост объема производства, расширение и обновление ассортимента продукции приводят к увеличению типоразмеров транспортной тары, используемой в народном хозяйстве. Увеличению типоразмеров способствует также то обстоятельство, что изготовляют транспортную тару многие отрасли промышленности, руководствуясь при этом как государственными и отраслевыми стандартами, так и техническими условиями отдельных предприятий.
В результате в обращении находится неоправданно большое число типоразмеров транспортной тары, что затрудняет ее взаимозаменяемость при упаковывании однородной продукции, значительно усложняет учет, планирование и распределение по потребителям и приводит к перерасходу материальных ресурсов. Уровень унификации типоразмеров составляет для деревянной тары не более 25%, для картонной — 35—40% ·
Международная стандартизация в рамках СЭВ в области тары и упаковки и внутрисоюзная стандартизация направлены- в первую очередь на унификацию размеров транспортной тары с целью сокращения числа типоразмеров тары, создания условий для ее повторного использования и взаимозаменяемости. При этом появляется возможность изготовлять тару серийно, а ее производство механизировать и автоматизировать.
Унификация размеров тары осуществляется на базе одного модуля. В соответствии с рекомендациями международной организации по вопросам стандартизации ИСО, а также решениями Европейской федерации упаковки, Международного железнодорожного
37
-союза и других организаций модулем для унификации размеров транспортной тары был принят размер поддона 800X1200 мм. Размеры принятого модуля имеют много общих деталей, что создает удобства для унификации размеров транспортной тары [10].
Ряд предпочтительных внешних размеров транспортной тары получают делением длины и ширины базового модуля на целые числа. Для устранения большого разрыва ближайшими размерами и учитывая потребности народного хозяйства, основной ряд дополнен числами, кратными базовому модулю.
Унифицированный ряд чисел для наружных размеров транспортной тары, мм: 1200
| 1023
| 800
| 643
| 500
| 360
| 300
| 240
| 120
| 1143
| 1000
| 748
| 600
| 465
| 353
| 285
| 228
| 100
| 1120
| 960
| 720
| 720
| 571
| 435
| 333
| 280
| 200
| 1080
| 900
| 685
| 560
| 424
| 320
| 266
| 150
|
| 1065
| 885
| 667
| 532
| 400
| 311
| 250
| 133
|
| На основании полученных величин строятся сочетания длины и ширины тары прямоугольного сечения, использующие площадь поддона на 100%. Число таких сочетаний 32. Практика показала, что этого недостаточно для удовлетворения всех потребностей народного хозяйства. Поэтому вводятся дополнительные сочетания размеров, использующие площадь поддона не менее чем на 80%. Высота тары также принимается из чисел модульного ряда.
Ряд унифицированных максимальных наружных диаметров транспортной тары круглого сечения получается моделированием их в диагональном и ортогональном порядке на модульном поддоне с учетом максимального использования его площади, но не менее 60%.
Приведем ряд наружных диаметров транспортной тары, мм: 800
| 484
| 400
| 351
| 294
| 266
| 226
| 200
| 600
| 435
| 370
| 320
| 277
| 246
| 219
|
| 2.3. Основные принципы расчета прочности транспортной тары
Факторы, влияющие на прочность тары. Прочность конструкции транспортной тары определяется:
характером груза и его допустимой массой в единице тары, зависящей от способа выполнения перегрузочных работ (вручную или механизированно) и от грузоподъемности погрузочно-разгру-зочных машин;
размерами тары и ее отдельных деталей. При этом необходимо соблюдать оптимальное соотношение длины, ширины и высоты тары, обеспечивающее минимальный расход материала;
38
механическими свойствами материала, используемого для изготовления тары;
условиями эксплуатации транспортной грузовой единицы, т. е. климатическими, химическими, биологическими и механическими воздействиями.
В процессе обращения каждая единица тары должна выдерживать статические нагрузки при штабелировании на складе и & вагоне, а также динамические и вибрационные нагрузки, возникающие при механизированном формировании и расформировании транспортных пакетов, выполнении перегрузочных операций и движении транспортных средств. Развитие средств механизации погру-зочно-разгрузочных работ приводит к заметному изменению статических и динамических нагрузок. Это связано с увеличением массы одного грузового места, высоты штабелирования при напольном хранении, с уменьшением высоты падения (сбрасывания) при установке тары с грузом в штабель или стеллаж и с повышением скоростей перемещения грузов ПТМ подъемно-транспортными машинами.
Усилия, действующие на тару. Статическое сжимающее усилие Рст, Н, которое должна выдерживать тара, расположенная в нижнем ряду штабеля:
где Q — масса тары с грузом, кг;
g— ускорение свободного падения (£=9,81 м/с2);
H — высота складирования (для деревянной тары H≤6 м, для картонной—H≤3 м);
h— высота единицы тары, м.
При транспортировании по железной дороге на груз в таре действуют вертикальная Рв и горизонтальные (продольная Рпри поперечная Рп) инерционные силы. Следовательно, элементы тары должны быть проверены на восприятие нагрузок, которые составляют:
где ав, апр, ап — соответственно вертикальное, продольное и поперечное ускорения, м/с2 или доли g;
nв, nпр, nп — число грузовых единиц соответственно в вертикальном, продольном и поперечном направлениях штабеля, размещенного б кузове подвижного состава.
Расчет конструкции крупногабаритной тары, масса брутто которой составляет 500—20 000 кг, производится с учетом поперечных сжимающих нагрузок, возникающих при строповке тары с грузом, и изгибающих усилий, действующих на элементы тары Яри подъеме груза [4].
Схема действия сил на крупногабаритную тару в процессе грузовой операции показана на рис. 2.1. Усилие массы груза G, Н,
39
д олжно быть компенсировано вертикальными составляющими реакций в стропах:
где R — реакция в стропах, Н;
β — угол между стропами и горизонтальной плоскостью крышки тары, град.
Горизонтальная составляющая реакции R=Rcosβ с учетом предыдущей формулы: Rг=0,25Gctgβ. Тогда сжимающее усилие поперек ящика составляет Rп=0,25Gctgβsinα. При этом угол в должен быть не менее 45°.
Н еобходимо учитывать, что перемещение грузов кранами происходит в условиях переходных режимов, действия ускорений. Средняя величина ускорения составляет аср=0,6—0,8 м/с2, поэтому в формулу для определения Rnнеобходимо ввести динамический коэффициент kдучитывающий увеличение нагрузки:
Т акже следуетучесть, что в процессе обращения тара подвергается перегрузкам многократно, в результате чего появляются усталостные напряжения и снижается прочность тары. Поэтому в формулу для определения Gвводится коэффициент перегрузки kпер, значение которого принимается 1,1—1,25 в зависимости от числа перегрузок. С учетом kд и kперсжимающее усилие
Необходимо также рассмотреть оптимальные зоны строповки транспортной тары, которые определяют усилия на изгиб полоза, работающего как свободно лежащая балка. Максимальные усилия на изгиб при этом возникают в точках опоры и в середине полоза. Правильно определив зоны строповки, можно добиться минимальных значений изгибающего момента. Расчеты показали, что такие зоны располагаются на расстоянии 0,2L от торцовых стенок ящика (см, рис. 2.1).
Расчет прочности картонной тары. При расчете сжимающего усилия, которое должна выдерживать картонная транспортная тара при штабелировании, на складе учитывается коэффициент запаса прочности kзап, который зависит от продолжительности хранения и колеблется в rape 40
Таблица 2.1
Показатель
|
| Норма для картона марок (при влажности 6
| -I 2 %)
|
| Д
| T-0 | T-1 T-2
| т-з
| Т-4
| П-1
| П-2
| п-з
| Сопротивление
| _
| 54
| 40
| 36
| 30
| 20
| 100
| 80
| 60
| торцовому сжатию, Н/см Сопротивление
| 0,2
| 1,3
| !,2
| 1,1
| 0,9
| 0,7
| 2,07
| 1,7
| 1,4
| продавливанию, МПа
|
|
|
|
|
|
|
|
|
| д елах 1,6 (срок хранения менее 30 сут) — 1,85 (срок хранения более 100 сут). Тогда сжимающее усилие РСж, Н, действующее на картонный ящик, составит
PCm^^agQ(H-h)/h.(2.1)
С другой стороны, сопротивление сжатию картонной тары зависит от параметров ящика и прочности гофрированного картона на торцовое сжатие. В соответствии с упрощенной формулой Макки [13]
^сж = 2,55Рту0Х| (2.2)
где Рт—торцовая жесткость, Н/см;
σ — толщина картона, см;
Z— периметр ящика, см.
Торцовая жесткость принимается в зависимости от марки картона (табл. 2.1), а толщина практически равна высоте гофр. Сопоставляя формулы (2.1) и (2.2) и зная параметры ящика, можно определить допустимую высоту штабелирования на складах и в вагоне, а также на основе оптимальной высоты штабелирования — необходимые параметры и марку картона.
Расчет прочности картонных навивных барабанов производится на основе статического сжимающего усилия, определенного с учетом оптимальной высоты штабелирования:
Рбсж-K^ngQ (И-hH)lhHt(2.3)
где Hн —наружная высота барабана, м.
Преобразуем выражение (2.3) с тем, чтобы получить зависимость расчетного усилия от параметров барабана и объемной массы затаренного в него груза. Масса груза в барабане значительно больше массы самого барабана, поэтому последней величиной пренебрегаем. Масса груза может быть определена на основе объемной массы данного груза и внутреннего объема тары:
(?=0,25рЯЯЙ/йВс,
где dBthB— внутренние соответственно диаметр и высота барабана, см; с — объемная масса груза, г/см3.
41
Выражение (З—ЛЗ)/ЛЗ заменим выражением Я/Лв> что допустимо, так как #//йВ» (#—Лн)/Лн. Тогда
Сопротивление сжимающему усилию картонного барабана Р сж зависит от жесткости, числа слоев картона и диаметра барабана [13]: где «ел — число слоев картона; Ж — жесткость картона по кольцу, Н/см; Ккл—коэффициент, увеличивающий жесткость за счет клеевого слоя. В условиях равенства сжимающего усилия и сопротивления этому усилию можно определить допустимую высоту штабелирования данного груза в барабанах определенных параметров или на основании оптимальной высоты штабелирования и принятой технологии навивки барабанов (Ж=созп1, /i(wi=const)—диаметр, который обеспечит необходимую поочность: Сопротивление сжатию барабана можно увеличить» изменяя число слоев картона» образующих стенки барабана, или используя другую марку картона, обладающую повышенной жесткостью. Расчет прочности полимерных пленок. Параметры пленок для скрепления пакетов определяются в зависимости от величины продольных инерционных сил как наибольших, возникающих в процессе движения подвижного состава» фрикционных свойств груза, массы пакета, а также от свойств самой пленки [25]. 42
Рассмотрим принципиальную схему сил, действующих на транспортный пакет, скрепленный термоусадочной пленкой (рис. 2.2). На пакет массой Qдействует продольная инерционная сила / >np=flnpQf которая стремится сдвинуть пакет относительно поддона. Считаем, что поддон не проскальзывает по полу вдоль вагона. Пленка оказывает на пакет равномерное давление Р пл. Равнодействующая этому давлению сила Рпл5 прижимает пакет к поддону и зависит от свойств плетки и площади верхней плоскости пакета S. На боковые плоскости пакета действуют силы натяжения пленки, равные по величине и обратные по направлениям, поэтому они в расчет не принимаются.
В результате действия силы тяжести G=gQ и силы РПл$ возникает сила трения Frp:
где / — коэффициент трениямежду поддоном и пакетом.
Если Pnp>FTp, пакет сдвигается относительно поддона и при этом происходит деформация пленки, т. е. ее растяжение на вертикальных гранях. Усилие, возникающее в пленке /?, не должно быть больше допустимого:
где [о] — допускаемое напряжениена растяжение пленки, Н/см2; о — толщина пленки, см; #пл — длина пленки в сечении разрыва, т. е. по вертикальной грани пакета, равная высоте пакета, см
Реакция пленки может быть найдена из уравнения сил, действующих на пакет (см. рис. 2.2), Рпр—f(G+Pn*S)—2R—0. Тогда толщина пленки определится из соотношений:
В процессе движения на пакет действуют вибрационные силы, которые ослабляют натяжение пленки, поэтому ее толщину рассчитывают при условииРпл=0:
2,4. Упаковочные материалы
В зависимости от назначения упаковочные материалы разделяют на изолирующие, поглощающие и амортизационные.
Изолирующие материалы служат для защиты грузов от воздействия внешних агрессивных факторов. К таким материалам относятся разнообразные виды бумаги, фольги, полимерных пленок, а также различные их сочетания. Бумажные изолирующие материалы используются в основном для предотвращения проникновения жиров (пергамент, подпергамент, пергамин) и влаги (парафинированная, водонепроницаемая, битумная и дегтевая). Битумная и дегтевая бумага имеет ограниченное применение, так как вызывает коррозию металлов. Применяются специальные сорта бумаги,
43
такие, как биостойкая и антикоррозионная. Антикоррозионная бумага содержит в своем составе особые вещества (ингибиторы), которые связывают кислород и вызывают образование на поверхности металла предохранительного слоя.
Для изоляции продукции от проникновения посторонних запахов, жиров и влаги применяется фольга из меди, свинца, алюминия, олова, нержавеющей стали. Фольга используется часто в сочетании с другими различными материалами. В качестве изолирующих используются также полимерные пленки. Герметичные чехлы из полимерных пленок обеспечивают защиту металлических изделий от коррозии в самых экстремальных климатических условиях при температуре до +60 °С и влажности до 100%. Герметичность обеспечивается сваркой швов упаковки, однако для предотвращения конденсации влаги внутрь упаковки необходимо вкладывать вместе с изделием поглощающие материалы.
Поглощающие материалы используются для поглощения избыточных паров воздуха, проникающих внутрь упаковки, или для предотвращения распространения внутри упаковки жидкостей, вытекающих из поврежденной потребительской тары. К таким материалам относятся активированный уголь и силикагель, обладающие высокой гигроскопичностью, и некоторые другие материалы, впитывающие влагу. У силикагеля при упаковке должна быть влажность не более 2%. Если же его влажность выше, необходимо предварительно высушить материалы, а затем расфасовать силикагель в тканевые мешочки массой 1 кг и в таком виде укладывать в упаковку. Общая масса силикагеля, необходимая для осушения избыточных паров, зависит от площади поверхности груза.
Амортизационные материалы обеспечивают сохранность изделий при ударах, вибрации, трении выступающих частей изделия о внутренние поверхности транспортной тары и других нагрузках. Требования к амортизационным материалам следующие: небольшая объемная масса, достаточная механическая прочность, минимальная остаточная деформация, возникающая в результате действия механических нагрузок, негигроскопичность и химическая инертность, отсутствие абразивных свойств, низкая стоимость и простота изготовления.
Характеристика амортизационных материалов. Каждый вид амортизационных материалов имеет свои специфические свойства, определяющие условия использования и ограничивающие сферу применения.
Древесная стружка обладает высокой эластичностью, используется для амортизации тяжелых предметов, однако ее упругие свойства нестабильны, они зависят от влажности. Оптимальная влажность древесной стружки составляет 12—18%. При большей влажности стружка теряет эластичность, а при меньшей ломается и пылит. Кроме того, древесная стружка может содержать смолистые вещества, вызывающие коррозию.
44
Войлок и шерсть отличаются достаточной упругостью, хорошо сопротивляются повторным деформациям, но, гигроскопичны, подвержены гниению и поражению насекомыми.
Стекловолокно обладает наибольшей упругостью, негипроско-пично, не подвержено сгоранию, но характеризуется высокой абра-зивностью, что значительно ограничивает сферу его применения.
Бумага и картон — наиболее распространенные виды амортизирующих материалов. Они легко принимают нужную форму, стоимость их производства относительно невелика, хорошо амортизируют легкие изделия, применяются для упаковывания пищевых, парфюмерных, медицинских и других грузов, но боятся сырости,, при повторном использовании теряют упругие свойства.
Пенистые полимеры являются наиболее перспективными амортизаторами. Среди них необходимо выделить пенополистирол, амортизирующий и теплоизолирующий материал с микроячеистой структурой. Плотность пенополистирола 25 кг/м3. Он обладает большой механической прочностью, стоек к влаге, низким температурам, не дает пыли, но при повторных нагрузках изменяет свои амортизационные свойства. Применяются также пенополиуретан, пенополиэтилен, велофлекс и др., отвечающие всем современным требованиям, но обладающие пока высокой стоимостью. Свойства пенистых амортизационных материалов достаточно хорошо изучены, разработаны методики расчета прокладок из указанных материалов.
Динамическая характеристика амортизационных материалов. При перевозке различными видами транспорта, хранении на складе в штабелях, выполнении погрузочно-разгрузочных работ система «изделие — упаковка» подвергается воздействию различных видов нагрузок, ударов и вибрации.
Практика показала, что наиболее опасными нагрузками, действующими на систему ««изделие — амортизация — тара» в процессе доставки от изготовителя до потребителя, являются удары. Нормативные воздействия нагрузок на тару и груз при различных условиях перевозки и перегрузки следующие:
Условия перевозок и перегрузок Величина нагрузки, доли g
Перемещение по железной дороге 2,0 Воздействия при соударении же лезнодорожных вагонов 3,0
Перемещение автотранспортом:
по асфальтовому покрытию. . . 1,0—1,5
» грунтовой дороге. ..... 3,5
Перемещение морским транспортом 1,0
» авиатранспортом . . 2,0—5.0 Воздействия при выполнении гру зовых операций 2,0—5,0
Удары при падении 25,0 и более
45 Выбор амортизационного материала для конкретных условий работы осуществляется на основе его динамической характеристики, определяемой специальными испытаниями. В процессе испытания имитируется падение груза (молота) переменной массы на подкладку из амортизационного материала. По результатам испытаний строится график зависимостей ударной перегрузки от статической нагрузки. Эта зависимость и является динамической характеристикой амортизационного материала. Кривая, выражающая зависимость «ударная перегрузка — статическая на-прузка», представляет характерную вогнутую форму (рис. 2.3) с ярко выраженным минимумом.
При малой массе молот (левая ветвь динамической кривой) создает на амортизаторе нагрузку меньшей величины по сравнению с необходимой для того, чтобы, преодолев упругие силы материала, деформировать его на значительную величину (происходит отскок); возникают значительные ударные перегрузки. С увеличением массы молота деформация материала увеличивается и, наконец, достигает такой величины, при которой материал обнаруживает наилучшие амортизационные свойства. Эта нагрузка соответствует минимуму динамической кривой.
При дальнейшем увеличении массы молота возрастает остаточная деформация. Вследствие сильного сжатия материал начинает терять свои амортизационные свойства, ударные перегрузки вновь увеличиваются (правая ветвь кривой). Таким образом, зона минимума кривой (динамической характеристики) соответствует оптимальным условиям работы испытываемого материала.
Расчет параметров амортизирующих прокладок. Пусть изделие с массой Q и площадью опнрания S требует защиты от ударов в процессе выполнения погрузочно-разгрузочных работ. При этом известно, что само изделие может выдерживать максимальную перегрузку Пдоп, а максимальная высота его падения Я.
Для защиты указанного изделия используются специальные прокладки из амортизационных материалов, динамические характеристики которых описываются выражением [18]
аг И
ЛВ
где Л — ударная перегрузка, доли g\
С — статическое давление изделия на прокладку, Н/см2; h— высота прокладки, см; ось аз — размерные постоянные величины, характеризующие ударозащит-ные свойства материала, Н/см2, сма/Н; од — коэффициент амортизации. Выбор амортизационного материала определяется условием
"min^ "доп.
где tfmin — минимальное значение ударной перегрузки, которое может обеспечить амортизационный материал определенного вида в заданных условиях.
Минимальное значение ударной перегрузки —с ТГ+аз(—) °\
Значение статического давления, которое минимизирует функ цию (2.4),
/>*=Л/Я А/бй/б3'.
Минимальное значение ударной перегрузки находим* подставляя в выражение (2.4) вместо С значение Р*. После подстановок и преобразований получим
где А — обобщенный коэффициент амортизации:
-4=0^+2 V б,б3 ·
Таким образом, если Япип^Ядоп, амортизационный материал данного вида может быть использован для изготовления прокладок.
Толщина прокладки уточняется при условии:
/7т1п=/7доп; к = АН/Пп0ц.(2.5)
Площадь прокладки определяется из условия обеспечения оптимального значения статического давления от массы изделия на
прокладку:
P*=h/HYOi/o, =Q/Snp, где Sbp— площадь амортизирующей прокладки.
Тогда S=Q#/(Ay где At— размерная постоянная величина, характеризующая свойства амортизационного материала, см2/Н:
А у Oi/Оз
Полученная площадь прокладки 5Пр сравнивается с площадью опирания груза S. Если S/2^Snp^S, то прокладку изготовляют площадью Sapи располагают ее под центром тяжести груза; если Snp>5, то следует выбрать другой материал и повторить расчет.
По проведенным расчетам конструируют прокладки, производят упаковку изделия и ударные испытания. Кроме того, оценивают виброзащитные свойства упаковки с амортизирующими прокладками по методике, установленной соответствующими стандартами.
|
|
|