I. общая нозология Определение понятия болезнь
Скачать 1.81 Mb.
|
2. Наследственные нарушения углеводного обмена. Наследственные нарушения углеводного обмена могут быть обусловлены недостаточностью специфических ферментов или транспортной системы мембраны, необходимых для обмена определенного сахара: клинические проявления при этом варьируют от доброкачественной петозурии у практически здорового ребенка до галактоземии, когда больному грозит гибель от истощения и печеночной недостаточности или тяжелой диареи и дегидратации при синдроме нарушенного всасывания глюкозы и галактозы. В основе синдрома нарушения всасывания углеводов лежит недостаточность эпителия либо транспорта моносахаридов. В обоих случаях сахар накапливается в просвете кишечника, повышая осмолярность кишечного сока и тем дополнительно насасывая в просвет кишечника воду. Дети страдают от болей и вздутия живота, поноса, отстают в развитии и росте. Также выделяют галактоземию – рецессивно наследуемое заболевание, проявляющееся в неспособности к обмену галактозы, входящей в состав лактозы молока. Дефектом является секреция фермента с нарушенной активностью. Галактоземия сопровождается галактозурией. Обмен галактоз задерживается на уровне галактозо-1-фосфата, который накапливается в крови, селезенке, печени, хрусталике. Развиваются катаракта, цирроз печени. У детей задержка в развитии, исхудание, умственная отсталость. Гликогенозы – наследственная пониженная активность любого их ферментов (болезни накопления). Болезнь Гирке - патологическое накопление гликогена в печени и почках, гипогликемия, в результате надостаточности глюкозо-6-фосфатазы. Фруктозурия и пентозурия – наследуемые патологические состояния связанные с непереносимостью фруктозы. После приема фруктозы у больных развивается гипогликемия. Со временем поражение печени, почек. Более доброкачественно протекает фруктозурия с накоплением фруктозы в крови. Мукополисахаридозы. Отложение в тканях организма полимерных углеводов глюкозаминогликанов или мукополисахаридов. Связан с дефектом гидролазы, которая расщепляет ГАГ. Нерасщепленный он накапливается в лизосомах почти всех клеток. Поражаются печень, селезенка, сердце, кровеносные сосуды. 3. Механизмы развития гипогликемии и гипергликемии Гипергликемия: Наруш-е прониц мембран, наруш-ся синтез ГЛ-6-Ф→включ-ся гликолиз→сниж-ся гликоген, сниж-ся гликолиз → глюконеогенез → гипергликемия. Наруш-ся реабсорбция воды → полиурия → дегидратация нейронов ц жажды → полидепсия. 1. Алиментарная гипергликемия развивается после приема большого количества легкоусвояемых углеводов. При этом из кишечника быстро всасывается большое количество глюкозы, превышающее возможность печени и других тканей ассимилировать ее. Избыток углеводов, воздействуя на рецепторы желудочно-кишечного тракта, рефлек-торно вызывает ускорение расщепления гликогена в печени. Повышается содержание глюкозы в крови. Если оно превышает 8 ммоль/л, глюкоза появляется в моче (глюкозурия). Алиментарную гипергликемию используют в качестве одного из тестов для оценки состояния углеводного обмена (сахарная нагрузка, или глюкозотолерантный тест). У здорового человека после одномоментного приема 50—100 г глюкозы в течение первого часа ее уровень в крови нарастает, затем постепенно снижается. Через 2—2,5 ч наступает гипогликемическая фаза в результате компенсаторного усиления продукции инсулина. Через 3 ч содержание сахара в крови нормализуется. 2. Эмоциональная гипергликемия, ее называют также нейрогенной. Возникает при эмоциональном возбуждении, стрессе, боли. Процесс возбуждения коры головного мозга иррадиирует на нижележащие отделы центральной нервной системы. Поток импульсов по симпатическим путям направляется к печени, усиливает гликоге-нолиз и тормозит переход углеводов в жир. 3. Гипергликемия при судорожных состояниях, когда происходит расщепление гликогена мышц и образование большихколичеств молочной кислоты, из которой в печени синтезируется глюкоза. 4. Гормональные гипергликемии развиваются при нарушении функции эндокринных желез, гормоны которых участвуют в регуляции углеводного обмена. Например, гипергликемия развивается при повышении продукции глюкагона — гормона а-клеток островков Лангерганса поджелудочной железы. Глюкагон, активируя фосфорилазу печени, способствует гликогенолизу. Адреналин и тироксин активируют гликогенолиз. Гипергликемию вызывает избыток СТГ, так как данный гормон тормозит синтез гликогена, активирует инсулиназу печени, способствует образованию ингибитора гексокиназы и стимулирует секрецию глюкагона. Увеличение продукции АКТГ и глюкокортикоидов вызывает гипергликемию в результате стимуляции глюконеогенеза и торможения активности гексокиназы. 5. Гипергликемия при некоторых видах наркоза (например, эфирном и морфинном) может быть вызвана возбуждением симпатических центров и выходом адреналина из надпочечников; при хлороформном наркозе к этому присоединяется нарушение гли-когенообразовательной функции печени. 6. Гипергликемия при недостаточности инсулина является наиболее выраженной и постоянной. Недостаточность инсулина может быть панкреатической (абсолютной) и внепанкреатичёской (относительной). Инсулиновая недостаточность лежит в основе заболевания сахарным диабетом. Гипогликемия — понижение уровня сахара крови ниже нормального. Она развивается в результате недостаточного поступления сахара в кровь, ускоренного выведения его из крови или комбинации этих факторов. Причины гипогликемии весьма разнообразны. К ним относятся: 1) передозировка инсулина при лечении сахарного диабета — это одна из частых причин; 2) повышенная продукция инсулина при гиперфункции инсулярного аппарата поджелудочной железы (гиперплазия, инсуло-ма); 3) недостаточная продукция гормонов, способствующих катаболизму углеводов: тироксина, адреналина, глюкокортикоидов и др.; 4) недостаточное расщепление гликогена при гликогенозах; 5) мобилизация большого количества гликогена из печени, не восполняющаяся алиментарно; 6) поражение клеток печени (острые и хронические гепатиты); 7) углеводное голодание (алиментарная гипогликемия); 8) нарушение всасывания углеводов в кишечнике; 9) так называемый почечный диабет, при котором нарушено фос-форилирование глюкозы при отравлении ядами, блокирующими гексокиназу (флорид-зин, монойодацетат). Нефосфорилированная глюкоза не реабсорбируется в канальцах и переходит в мочу. Развивается глюкозурия и как следствие — гипогликемия; 10) у новорожденных может развиться выраженная гипогликемия (вплоть до судорог) за счет недостаточности механизмов регуляции углеводного обмена. К недостатку глюкозы особенно чувствительна центральная нервная система, для которой глюкоза — единственный источник энергии. Поэтому при гипогликемии резко понижается потребление мозгом кислорода. При продолжительных и часто повторяющихся гипогликемиях в. нервных клетках происходят необратимые изменения. Сначала нарушаются функции коры головного мозга, а затем и среднего мозга. При .уровне сахара 4—3 ммоль/л развиваются тахикардия, обусловленная гиперпродукцией адреналина, чувство голода (возбуждение вентролатеральных ядер гипоталамуса низким уровнем глюкозы в крови), появляются симптомы поражения нервной системы — тремор рук, слабость, раздражительность, повышенная возбудимость, чувство страха. При нарастающей гипогликемии к этим симптомам присоединяется притупление чувствительности. Состояние больного напоминает алкогольное опьянение. Иногда появляются галлюцинации. При падении уровня глюкозы в крови ниже 3—2,5 ммоль/л резко нарушается деятельность центральной нервной системы. Возникают судороги типа эпилептических. Может развиться коматозное состояние. Судороги имеют определенное компенсаторное значение, так как способствуют расщеплению гликогена мышц. При этом из образовавшейся молочной кислоты в печени синтезируется глюкоза и уровень сахара в крови возрастает. Гораздо реже по сравнению с нарушениями обмена глюкозы встречаются нарушения обмена других углеводов. К ним относятся: пентозурия (выделение с мочой пентоз), фруктозурия (выделение С мочой фруктозы), галактозурия (выделение с мочой галактозы) и др. 4. Этиология панкреатической и внепанкреатической инсулиновой недостаточности Панкреатическая Недостаточность этого типа развивается при разрушении поджелудочной железы опухолями, при повреждении ее ткани инфекционным процессом (туберкулез, сифилис), при травмах поджелудочной железы. В эксперименте инсулиновую недостаточность можно вызвать удалением поджелудочной железы, однако при этом развиваются также тяжелые нарушения пищеварения. При панкреатитах (острые воспалительно-дегенеративные процессы в поджелудочной железе) нарушаются все ее функции, в том числе образование инсулина. После панкреатита в 16—18 % случаев развивается инсулиновая недостаточность в связи с избыточным разрастанием соединительной ткани, которая как бы «замуровывает» (5-клетки островков Лангерганса, нарушая доставку к ним кислорода. Одна из частых причин инсулиновой панкреатической недостаточности — местная гипоксия островков Лангерганса (атеросклероз, .. спазм сосудов), где в норме кровообращение интенсивно. При этом в р-клет-ках тормозится переход сульфгидрильных групп в дисульфидные, в результате уменьшается образование инсулина. Недостаточность инсулина может развиться, по-видимому, при нарушении пуриново-го обмена в результате образования в организме аллоксана (рис. 48), близкого по структуре к мочевой кислоте (уреид мезок-салевой кислоты). Аллоксан используют для моделирования сахарного диабета в эксперименте. Аллоксан токсичен для различных клеток организма, но обезвреживается за счет реакции с 8Н-группами. Однако в островковой ткани содержание этих групп низкое и концентрация аллоксана в 0-клетках островков Лангерганса по сравнению с другими клетками организма быстрее достигает токсического повреждающего уровня. Если за 2 мин до введения аллоксана ввести цистеин, который богат сульфгид-рильными группами, экспериментальный диабет не развивается. Есть наблюдения, что у больных сахарным диабетом содержание цистеина нередко понижено. Известны данные о том, что аллоксан непосред ственно повреждает базофильные инсулоци-ты вплоть до наступления их некроза. Определенную роль в патогенезе инсули-новой недостаточности может играть недостаток ионов цинка, необходимых для конгломерации гранул молекул инсулина и его депонирования. Поэтому для моделирования диабета в эксперименте используют внутривенное введение дитизона, блокирующего цинк в |3-клетках островков Лангер-ганса. Кроме того, в данных клетках образуется дитизонат цинка, который повреждает молекулы инсулина. Инсулярный аппарат может истощаться при излишнем, частом употреблении в пищу легкоусвояемых углеводов, вызывающих алиментарную гипергликемию, при переедании. Развитию диабета способствует злоупотребление алкоголем, при этом поражаются печень (гепатогенный диабет), поджелудочная железа. По данным ВОЗ, существует определенная связь между поражением поджелудочной железы и потреблением продуктов, содержащих пищевые цианиды — тапиоки и в меньшей степени сорго, просо. Влияние пищевых цианидов особенно выражено при от-, сутствии в пище или в организме серо-содержащих аминокислот, необходимых для детоксикации цианидов. Имеются экспериментальные модели сахарного диабета у генетически предрасполсР" женнызГ "йщпей, вызываемого вирусом эн-цефаломиокардита. Предполагается, что некоторые вирусы (энтеровирус Коксаки В4, вирусы паротита и краснухи) могут послужить причиной диабета у человека. Ряд лекарственных препаратов (группы тиазидов, кортикостероиды и др.) могут вызвать нарушения толерантности к глюкозе, а у предрасположенных к диабету людей явиться пусковым фактором в развитии заболевания. Возникновение панкреатической инсули-новой недостаточности значительно зависит от наследственной неполноценности ин-сулярного аппарата. Внепанкреатическая инсулиновая . недостаточность Причиной этого типа недостаточности может быть избыточная связь инсулина с переносящими белками крови. Инсулин, связанный с белком, не активен в печени и мышцах, но оказывает обычное влияние на жировую ткань, в частности, обеспечивает переход глюкозы в жир, тормозит липолиз (так называемый диабет тучных). Инсулиновая недостаточность может развиться вследствие повышенной активности инсулиназы — фермента, расщепляющего инсулин и образующегося в печени к началу полового созревания. К чрезмерной активности инсулиназы могут привести избыток СТГ и глюкокортикоидов, дефицит ионов меди и цинка, ингибирующих ее. При этом разрушается много инсулина. Данный механизм может лежать в основе юношеского диабета. К недостаточности инсулина могут привести хронические воспалительные процессы, при которых в кровь поступает много протеолитических ферментов, разрушающих инсулин. Активность инсулина тормозится при избыточном содержании в крови неэстерифи-цированных жирных кислот, которые препятствуют утилизации тканями глюкозы и оказывают на инсулин непосредственно тормозящее действие. В ряде случаев при сахарном диабете содержание инсулина в крови нормально или даже повышено. Предполагают, что диабет при этом может быть обусловлен наличием в крови антагонистов инсулина (например, синальбумина). Образование в организме аутоантител против инсулина ведет к его разрушению. 5. Механизмы развития гипергликемии и глюкозурии при сахарном диабете Гипергликемия: Наруш-е прониц мембран, наруш-ся синтез ГЛ-6-Ф→включ-ся гликолиз→сниж-ся гликоген, сниж-ся гликолиз → глюконеогенез → гипергликемия. Наруш-ся реабсорбция воды → полиурия → дегидратация нейронов ц жажды → полидепсия. Глюкозурия. В норме глюкоза содержится в провизорной моче. В окончательной моче глюкозы нет, так как в канальцах она полностью реабсорбируется в виде глюкозофосфата и после дефосфорилиро-вания попадает в кровь. При сахарном диабете процессы фосфорилированйя и дефос-форилирования глюкозы в канальцах почек не справляются -с избытком глюкозы в первичной моче. Кроме того, при диабете снижена' активность гексокиназы, необходимой для реабсорбирования глюкозы. В связи с этим почечный порог для глюкозы становится ниже, чем в норме. Развивается глюкозурия. При тяжелых формах сахарного диабета содержание глюкозы в моче может достигать 8—10 %. Осмотическое давление мочи повышено, поэтому в окончательную мочу переходит много воды. Особенно увеличен ночной диурез. У детей одним из ранних симптомов сахарного диабета может быть ночное недержание мочи. В результате полиурии развивается обезвоживание организма и как следствие его — усиленная жажда (полидипсия). 6. Механизмы нарушений белкового и липидного обменов при сахарном диабете Нарушения жирового обмена. При инсулин ов ой недостаточности уменьшаются поступление глюкозы в жировую ткань и образование жира из углеводов, снижается ресинтез триглицеридов из жирных кислот. Усиливается липолитический эффект СТГ, который в норме подавляется инсулином. При этом повышается выход из жировой ткани неэстерифицированных жирных кислот и .снижается отложение в ней жира, что ведет к исхуданию и повышению содержания в крови неэстерифицированных жирных кислот. Данные кислоты в печени ресинте-зируются в триглицериды, создается предпосылка для жировой инфильтрации печени. Этого не происходит, если в поджелудочной железе (в клетках эпителия мелких протоков) не нарушена продукция липокаина. Последний стимулирует действие липотроп-ных пищевых веществ, богатых метиони-ном (творог, баранина и др.). Метионин — донатор метильных групп для холина, входящего в состав лецитина, при посредстве которого жир выводится из печени. Сахарный диабет, при котором не нарушена продукция липокаина, называется островковым. Ожирения печени при этом не происходит. Если дефицит инсулина сочетается с недостаточной продукцией липокаина, развивается тотальный диабет, сопровождающийся ожирением печени. В митохондриях печеночных клеток из неэстерифицированных жирных кислот интенсивно образуются кетоновые тела. Кетоновые тела. К ним относятся ацетон, ацетоуксусная и р-оксимасляная кислоты. Они сходны по строению и способны к взаимопревращениям (рис. 49). Кетоновые тела образуются в печени, поступают в кровь и оттуда — в легкие, мышцы, почки и другие органы и ткани, где окисляются в цикле трикарбоновых кислот до СОз и воды. В сыворотке крови должно содержаться 0,002—0,025 г/л кетоновых тел (в пересчете на ацетон). В механизме накопления кетоновых тел при сахарном диабете имеют значение следующие факторы: 1) повышенный переход жирных кислот из жировых депо в печень и ускорение окисления их до кетоновых тел; 2) задержка ресинтеза жирных кислот из-за дефицита НАДФ; 3) нарушение окисления кетоновых тел, обусловленное подавлением цикла Кребса, от участия в котором в связи с усиленным глюконеогенезом «отвлекаются» щавелевоуксусная и а-кетоглютаровая кислоты. При сахарном диабете концентрация кетоновых тел возрастает во много раз (гиперкетонемия) и они начинают оказывать токсическое действие. Кетоновые тела в токсической концентрации инактивируют инсулин, усугубляя явления инсулиновой недостаточности. Создается «порочный круг». Гиперкетонемия — это декомпенсация обменных нарушений при сахарном диабете. Наиболее высока концентрация ацетона, которая у большинства больных в 3—4 раза превышает концентрацию ацетоуксусной и (3-рксимасляной кислот. Ацетон оказывает повреждающее влияние на клетки, растворяет структурные липиды клеток, подавляет активность ферментов, резко угнетает деятельность центральной нервной системы. Гиперкетонемия играет важную роль в патогенезе очень тяжелого осложнения сахарного диабета — диабетической комы. Для нее характерна потеря сознания, частый пульс слабого наполнения, падение артериального давления, периодическое дыхание (типа Куссмауля), исчезновение рефлексов. Диабетическая кома сопровождается выраженным негазовым (метаболическим) ацидозом. Щелочные резервы плазмы крови исчерпываются, ацидоз становится некомпенсированным, рН крови падает до 7,1— 7,0 и ниже. Кетоновые тела выводятся с мочой в виде натриевых солей (кетонурия). При этом повышается осмотическое давление мочи, что способствует полиурии. Концентрация натрия в крови уменьшается. Кроме того, при дефиците инсулина снижается реабсорб-ция натрия в почечных канальцах. Поэтому при резком снижении уровня сахара в крови в результате интенсивной инсулино-терапии коматозного состояния может резко снизиться суммарное осмотическое давление крови. Возникает опасность развития отека мозга. При сахарном диабете нарушается холестериновый обмен. Избыток ацетоуксусной кислоты идет на образование холестерина — развивается гйперхолестеринемия. Нарушения белкового обмена. Синтез белка при сахарном диабете снижается, так как: 1) выпадает или резко ослабляется стимулирующее влияние инсулина на энзи-матические системы этого синтеза; 2) снижается уровень энергетического обмена, обеспечивающего синтез белка в печени; 3) нарушается проведение аминокислот через клеточные мембраны. При дефиците инсулина снимается тормоз с ключевых ферментов глюконеогенеза и происходит интенсивное* образование глюкозы из аминокислот и жира. При этом аминокислоты теряют аммиак, переходят в а-кетокислоты, которые идут на образование углеводов. Накапливающийся аммиак обезвреживается за счет образования мочевины, а также связывания его а-кето-глютаровой кислотой с образованием глута-мата. Возрастает потребление а-кетоглютаровой кислоты, при недостатке которой снижается интенсивность цикла Кребса. Недостаточность цикла Кребса способствует еще большему накоплению ацетил-КоА и, следовательно, кетоновых тел. В связи с замедлением тканевого дыхания при диабете уменьшается образование АТФ. При недостатке АТФ снижается способность печени синтезировать белки. Таким образом, при инсулиновой недостаточности распад белка преобладает над синтезом. В результате этого подавляются пластические процессы, снижается продукция антител, ухудшается заживление ран, понижается устойчивость организма к инфекциям. У детей происходит задержка роста. При дефиците инсулина развиваются не только количественные, но и качественные нарушения синтеза белка, в крови выявляются измененные необычные белки-парапротеины, гликозилированные белки. С ними связывают повреждение стенки сосудов — ангиопатии. Ангиопатии играют важнейшую роль в патогенезе ряда тяжелых осложнений сахарного диабета (недостаточность коронарного кровообращения, ретинопатия и др.). |