бизнес план. Аяулым тема. Изучение молекулярных предикторов сосудистого риска опосредованного эндотелиальной дисфункцией у людей с сахарным диабетом 2 типа
Скачать 1.19 Mb.
|
СОСТОЯНИЕ ПРОБЛЕМЫПроблема борьбы с сахарным диабетом 2 типа (СД2) чрезвычайно актуальна, но лекарственная терапия этого заболевания остается все еще недостаточно эффективной. Во многом это связано с разнообразием факторов риска и механизмов развития инсулиновой резистентности (ИР) – первичного звена в патогенезе СД2, а также недостаточностью средств ее клинической диагностики. ИР проявляется как устойчивость клеток к действию инсулина и возникает из-за нарушения механизмов проведения в них инсулинового сигнала. Несмотря на большой прогресс, достигнутый в понимании этих механизмов, многие важные детали остаются неясными, препятствуя созданию лекарственных средств направленного действия. Следующее за ИР развитие событий в патогенезе СД2 включает усиление секреции инсулина как ответную реакцию организма на недостаток его действия. Однако длительная гиперинсулинемия ведет к дисфункции β-клеток поджелудочной железы и снижению синтеза инсулина на фоне персистирующей ИР. Как следствие, инсулинзависимый транспорт глюкозы из кровотока в клетки мышечной и жировой тканей окончательно нарушается, в печени усиливаются синтез глюкозы и, соответственно, ее секреция в кровоток. Развивается стабильная гипергликемия, при которой глюкоза и продукты ее обмена, несущие химически активные альдо- и кетогруппы, воздействуют на белки и клетки плазмы крови, а также на сосудистый эндотелий, физически модифицируя и нарушая их функции. Состояние, задолго предшествующее развитию СД2, предиабет. В это понятие входят такие нарушения углеводного обмена, как нарушение гликемии натощак и нарушение толерантности к глюкозе. На этом этапе возможно предотвращение патологических изменений и восстановление чувствительности клеток-мишеней к инсулину. В связи с этим ранняя диагностика ИР имеет большое практическое значение. Наличие ИР возможно определить или на молекулярном уровне по специфическим маркерам ИР, или на системном уровне с помощью гиперинсулинемического эугликемического клэмпа (ГЭК). Оба подхода инвазивны, длительны, трудо- и ресурсоемки, требуют аппаратных средств и отлаженных протоколов. При этом ГЭК все чаще используется для оценки ИР, тогда как молекулярные маркеры ИР не определены в эксперименте и не верифицированы в клинике. Молекулярные маркеры ИР следует искать среди компонентов инсулинового каскада, которые демонстрируют снижение активации инсулином в условиях ИР. Объектом анализа должны быть ткани-мишени инсулина (печень, мышечная или жировая ткань), что, соответственно, диктует необходимость работы с биопсийным материалом и на практике существенно осложняет проведение такого анализа. Инсулиновый каскад включает рецептор, субстрат инсулинового рецептора (белок IRS), PI3-киназный каскад и систему активации глюкозного транспортера Glut-4 [1]. Протеинкиназа Akt служит ключевой мишенью PI3-киназного каскада. Она фосфорилирует белок AS160 (Akt substrate of 160 kDa), который регулирует выход Glut-4 на клеточную мембрану и транспорт глюкозы в клетку. Тирозиновое фосфорилирование инсулинового рецептора и его субстрата IRS определяет активность инсулинового каскада, а инсулинзависимое, сайт-специфическое фосфорилирование Akt и AS160 – показатель его активности. Эти параметры можно измерять в лизатах клеток или гомогенатах тканей. Нарушение активности инсулинового каскада связано с сериновым фосфорилированием IRS под действием ряда ферментов в условиях, совокупно обозначаемых как факторы риска развития ИР. Основными факторами риска ИР считаются дислипидемия и ожирение, воспаление, стресс эндоплазматического ретикулума (ЭПР) и оксидативный стресс [1]. Несколько особняком следует выделить липодистрофию, которая тесно связана с ИР и СД2, но многие детали и механизмы этой взаимосвязи остаются пока неизвестными. За исключением липодистрофии, все эти условия провоцируют латентное воспаление жировой ткани за счет ее гипертрофии и гипоксии, инфильтрации макрофагами с их последующим переходом в воспалительный фенотип и секрецией спектра воспалительных цитокинов [2]. Эти цитокины запускают в адипоцитах воспалительные сигнальные каскады с участием NF-κB, IKK, JNK и других киназ [3]. Последние используют IRS как один из субстратов, фосфорилируя его по нескольким сериновым остаткам, переводя в неактивное состояние и прерывая передачу сигнала по инсулиновому каскаду [4–8]. Наряду с цитокинами, провоспалительным действием обладают также свободные жирные кислоты (СЖК), уровень которых сильно повышен при пищевой перегрузке и ожирении. СЖК связываются с толл-подобным рецептором TLR4 на адипоцитах, запускающим тот же воспалительный каскад с участием NF-κB, IKK и JNK. В итоге в адипоцитах усиливается сериновое фосфорилирование IRS и инсулиновый каскад выключается [9, 10]. ИР тесно связана с пищевой перегрузкой и ожирением, о чем свидетельствует феномен обращения симптомов СД2 и восстановления чувствительности к инсулину после бариатрических операций. Поэтому моделирование условий дислипидемии путем обработки культивируемых адипоцитов СЖК является принципиальным подходом при поиске маркеров ИР в эксперименте. Чувствительность каскада к инсулину определяется в этих условиях стандартно, по усилению сайт-специфического фосфорилирования IRS, Akt или AS160 при воздействии инсулина. Эндотелий сосудов не является классически инсулинзависимым, но служит первичной мишенью инсулина. Дисфункция эндотелия опосредует связь СД2 с сердечно-сосудистыми осложнениями. В условиях гипергликемии химически активная глюкоза и продукты ее обмена, такие как глиоксаль и метилглиоксаль, оказывают повреждающее воздействие на белки плазмы и клеток крови, а также гликируют белки сосудистого эндотелия [11]. Вместе с малоновым диальдегидом, накапливающимся в результате перекисного окисления избыточных липидов на более ранних стадиях патогенеза СД2, эти соединения обеспечивают развитие оксидативного и карбонильного стресса, нарушающих функции эндотелия. Дисфункция эндотелия проявляется в снижении его барьерных свойств, синтеза главного вазорелаксанта, оксида азота (NO), и усилении синтеза мощного вазоконстриктора, эндотелина-1 (ЭТ-1). Вместе с тем молекулярные мишени глюкозы и тонкие механизмы дисфункции эндотелия при СД2 остаются не до конца выясненными. Циркулирующий инсулин поддерживает барьерную функцию эндотелия, активируя синтез NO по механизму, идентичному активации входа глюкозы в жировые и мышечные клетки. Параллельно активируя Erk1/2 МАР-киназный каскад, инсулин контролирует также синтез ЭТ-1, тем самым влияя на тонус сосудов. В условиях ИР, гиперинсулинемии и дисфункции эндотелия действие инсулина нарушается, снижается вазорелаксирующая активность NO, усиливается констрикторное влияние ЭТ-1 и увеличивается проницаемость эндотелиального барьера. Изменяется проникновение самого инсулина сквозь эндотелий и его доступность для мышечных и жировых клеток, что вносит дополнительный вклад в изменение инсулинзависимого захвата глюкозы этими клетками из кровотока. Таким образом, нарушение барьерной функции эндотелия может являться одним из факторов, усугубляющих гипергликемию и потенцирующих развитие сосудистых осложнений СД2. Вместе с тем мало известно о том, для какого этапа патогенеза СД2 характерны эти изменения и что происходит с эндотелием сосудов на ранних этапах дислипидемии и предиабета. Стресс ЭПР является одним из факторов риска ИР. Стресс ЭПР возникает как реакция клеток на избыточное количество белков, их неправильное сворачивание и накопление в ЭПР [12]. Как правило, эта ситуация возникает при избытке поступающих в клетку пищевых ресурсов. Ретикулярный шаперон Grp78 отвечает за рефолдинг белков на ранних стадиях стресса ЭПР, обеспечивая защиту клеток от апоптоза. При стрессе и других неблагоприятных воздействиях также увеличивается уровень малых белков теплового шока (sHSP) [13], препятствующих развитию стресса ЭПР. Такие sHSP, как HspB1, HspB5 и HspB6, обладают выраженной антиапоптотической активностью [14], а HspB1 влияет на активность протеасом и стресс ЭПР [15]. Повышение экспрессии HspB1 улучшает инсулиновую сигнализацию и препятствует активации апоптотических протеинкиназ у тучных пациентов [16]. В ряде случаев механизмы действия шаперонов ретикулума и sHSP совпадают. И те, и другие могут участвовать в регуляции синтеза белка, влияя на активность фактора инициации трансляции elF2a [14]. sHSP легко подвергаются гликированию. При этом изменяются структура, свойства и антиапоптотическая активность sHSP [17, 18]. Однако полученные результаты достаточно противоречивы, касаются только двух белков – HspB1 и HspB5 и мало апробированы в клеточных моделях. Транскрипционная активность и адипогенная дифференцировка играют важную роль в патогенезе СД2. Избыточное потребление пищи при малоактивном образе жизни ведет к развитию ИР как адаптивной реакции вследствие перегрузки существующих жировых депо. Многие сахароснижающие препараты, используемые для терапии СД (тиазолидиндионы, производные сульфонилмочевины, глиниды, инсулин), активируют ключевой регулятор адипогенной дифференцировки PPARγ, вызывая увеличение массы тела за счет образования новых жировых депо [19]. Однако пилотный анализ инсулиновых каскадов клетки показывает возможность селективного воздействия на рост и деление клеток без одновременной индукции липо- и адипогенеза. Потенциальным кандидатом является транскрипционный фактор Рrер1 TALE-семейства гомеобоксных белков. Рrер1 не только регулирует активность PPARγ, но также усиливает экспрессию глюкозного транспортера Glut4 и чувствительность к инсулину [20–22]. Стимуляция дифференцировки преадипоцитов жировой ткани в клетки бурого и «бежевого» жира рассматривается как многообещающая альтернатива фармакологической терапии СД2. Известно, что бурый и «бежевый» жир обладают гиполипидемическим и гипогликемическим свойствами. Их клетки имеют разобщающий механизм, способствующий утилизации жиров и глюкозы без получения энергии и, следовательно, не подавляемый избытком этих пищевых ресурсов. Его ключевой участник – белок UCP-1, или термогенин. Он разобщает дыхательную цепь, снижает потенциал митохондрий и синтез в них АТФ. Как следствие, бурые и «бежевые» адипоциты могут сжигать жиры, переводя их энергию в тепло. Экспрессию термогенина и дифференцировку жировых клеток-предшественников в «бежевые» адипоциты контролирует локальный гормон ирисин [23]. Ирисин образуется из белка-предшественника Fndc5, экспрессия которого находится под контролем транскрипционного фактора PGC1a [24]. По нашим данным, экспрессию PGC1a, в свою очередь, контролирует Рrер1. Таким образом, Рrер1 может регулировать образование бурого жира и быть потенциальной мишенью для активации термогенеза. Бурая жировая ткань активно изучается в последнее десятилетие [25–30], а «бежевые» адипоциты открыты лишь в 2012 г. [31, 32]. Визуализировать бурую жировую ткань впервые стало возможным при применении ПЭТ-КТ с 18-фтор-дезоксиглюкозой (18FDG) [33]. В последние годы в качестве альтернативного подхода успешно используется МР-спектроскопия [34]. Разработка этих подходов позволит прослеживать эффективность направленной жировой дифференцировки в бурый и «бежевый» жир у пациентов с СД2 в рамках персонализированной медицины. Целью данного комплексного исследования было выяснение механизмов развития и новых способов диагностики ИР, определение дисфункции эндотелия как фактора риска сердечно-сосудистых осложнений при СД2, а также поиск биомишеней для новых антидиабетических препаратов. |