семинар патфиз. 4 семинар устно патфиз-1. Коллоквиум 4 патофизиология водноэлектролитного и кислотнощелочного равновесия. Гипоксии
Скачать 1.2 Mb.
|
Рис. 15–4. Типичные изменения газового состава и рН крови при гипоксии гемического типа. АВР — артерио-венозная разница по кислороду. • Снижение объёмного содержания кислорода в артериальной крови (V a O 2 в норме равно 19,5–21 объёмных %). • Нормальное (!) парциальное напряжение кислорода в артериальной крови. • Снижение р v O 2 (венозная гипоксемия). • Уменьшение V v O 2 • Негазовый ацидоз. • Снижение артерио-венозной разницы по кислороду. Тканевая гипоксия Причины тканевой гипоксии: факторы, снижающие эффективность утилизации кислорода клетками тканей и/или сопряжения окисления и фосфорилирования. Патогенез • Снижение эффективности усвоения кислорода клетками наиболее часто является результатом ингибирования активности ферментов биологического окисления, значительного изменения физико-химических параметров в тканях, торможения синтеза ферментов биологического окисления и повреждения мембран клеток. † Подавление активности ферментов биологического окисления наблюдается при: ‡ Специфическом ингибировании ферментов. Примером могут служить ионы циана (CN – ), препятствующие окислению цитохрома. В результате блокируется восстановление железа дыхательного фермента и транспорта кислорода к цитохрому. При этом реакции тканевого дыхания, активируемые другими агентами (не содержащими железо), не ингибируются. Однако, эффективность этих реакций весьма мала и не предотвращает развития гипоксии и нарушений жизнедеятельности. Аналогичные последствия вызывает блокада активных центров ферментов тканевого дыхания антимицином А, соединениями, содержащими сульфид-ион S 2 – и некоторыми другими веществами. ‡ Неспецифическом ингибировании ферментов биологического окисления ионами металлов (Ag 2+ , Hg 2+ , Cu 2+ ). При этом указанные металлы обратимо взаимодействуют с SH–группами фермента с образованием его неактивной меркаптоидной формы. ‡ Конкурентном ингибировании ферментов биологического окисления. Оно заключается в блокировании активного центра фермента веществом, имеющим структурную аналогию с естественным субстратом реакции. Эффект конкурентного ингибирования фермента может быть устранён или снижен при возрастании содержания в клетке истинного субстрата. В роли конкурентных ингибиторов могут выступать оксалат и малонат, блокирующие взаимодействие сукцината с сукцинатдегидрогеназой в цикле трикарбоновых кислот; фторлимонная кислота, конкурирующая за активный центр аконитазы с цитратом. † Изменения физико-химических параметров в тканях (температуры, электролитного состава, рН, фазового состояния мембранных компонентов) в более или менее выраженной мере снижают эффективность биологического окисления. Отклонение от нормы указанных и других параметров наблюдается при многих болезнях и патологических состояниях: гипертермиях и гипотермиях, недостаточности различных органов (сердца, почек, печени), анемиях и ряде других). † Торможение синтеза ферментов биологического окисления может наблюдаться при общем или частичном (особенно белковом) голодании; при большинстве гипо- и дисвитаминозов; нарушении обмена минеральных веществ, необходимых для синтеза ферментов. † Повреждение мембран. В наибольшей мере это относится к мембранам митохондрий. Важно, что выраженная гипоксия любого типа сама по себе активирует многие механизмы, приводящие к повреждению мембран и ферментов клеток с развитием тканевой гипоксии. • Снижение степени сопряжения окисления и фосфорилирования макроэргических соединений в дыхательной цепи. † В этих условиях увеличиваются расход кислорода тканями и интенсивность функционирования компонентов дыхательной цепи. Однако, большая часть энергии транспорта электронов трансформируется в тепло и не используется для ресинтеза макроэргов. Эффективность биологического окисления снижается. Клетки не получают энергетического обеспечения. В связи с этим нарушаются их функции и нарушается жизнедеятельность организма в целом. † Выраженной способностью разобщать процессы окисления и фосфорилирования обладают многие эндогенные агенты (например, избыток Ca 2+ , H + , ВЖК, йодсодержащие гормоны щитовидной железы), а также экзогенные вещества (2,4-динитрофенол, дикумарин, пентахлорфенол, грамицидин и другие). Изменения газового состава и рН крови Изменения газового состава и рН крови при тканевой гипоксии представлены на рис. 15–5. Рис. 15–5. Типичные изменения газового состава и рН крови при гипоксии тканевого типа. *При действии разобщающих агентов может меняться незначительно. • Увеличение парциального напряжения кислорода в венозной крови. • Повышение сатурации Hb кислородом в венозной крови. • Увеличение объёмного содержания кислорода в венозной крови. • Нормальный диапазон рО 2 , SO 2 и VO 2 в артериальной крови (в типичных случаях). • Уменьшение артерио-венозной разницы по кислороду (исключение — тканевая гипоксия, развившаяся при действии разобщителей окисления и фосфорилирования). • Негазовый ацидоз. Субстратный тип гипоксии Причины: дефицит в клетках субстратов биологического окисления. В клинической практике речь чаще всего идёт об глюкозе. При этом доставка к клеткам кислорода существенно не нарушена. Патогенез субстратной гипоксии заключается в прогрессирующем торможении биологического окисления. В связи с этим в клетках быстро снижается уровень АТФ и креатинфосфата, величина МП. Изменяются и другие электрофизиологические показатели, нарушаются различные пути метаболизма и пластические процессы. Изменения газового состава и рН крови при субстратной гипоксии представлены на рис. 15–6. Рис. 15–6. Типичные изменения газового состава и рН крови при гипоксии субстратного типа *АВР — артерио-венозная разница по кислороду. • Увеличение парциального напряжения кислорода в венозной крови. • Повышение сатурации кислородом Hb эритроцитов венозной крови. • Возрастание объёмного содержания кислорода в венозной крови. • Уменьшение артерио-венозной разницы по кислороду. • Нормальные значения p a O 2 , S a O 2 , V a O 2 • Ацидоз, развивающийся в результате нарушений обмена веществ, гемодинамики, внешнего дыхания и других изменений, обусловленных болезнью или патологическим процессом, вызвавшим гипоксию субстратного типа. Например, при СД — дефицит глюкозы в клетках, в организме накапливаются КТ, лактат, пируват (в связи с нарушением липидного и углеводного обмена), что приводит к метаболическому ацидозу. Перегрузочный тип гипоксии Причины перегрузочной гипоксии: значительное и/или длительное увеличение функции тканей, органов или их систем. При этом интенсификация доставки к ним кислорода и субстратов метаболизма, обмена веществ, реакций сопряжения окисления и фосфорилирования не способны устранить дефицита макроэргических соединений, развившегося в результате гиперфункции клетки. Наиболее часто речь идёт о ситуациях, вызывающих повышенное и/или продолжительное функционирование скелетных мышц и миокарда. Патогенез. Чрезмерная по уровню и/или длительности нагрузка на мышцу (скелетную или сердца) обусловливает: • Относительную (по сравнению с требуемым при данном уровне функции) недостаточность кровоснабжения мышцы. • Дефицит кислорода в миоцитах. Последнее вызывает недостаточность процессов биологического окисления в них. Изменения газового состава и рН крови при перегрузочной гипоксии приведены на рис. 15–7. Рис. 15–7. Типичные изменения газового состава и рН крови при гипоксии перегрузочного типа. АВР — артерио-венозная разница по кислороду. • Снижение парциального напряжения кислорода в венозной крови (венозная гипоксемия), оттекающей от гиперфункционирующей мышцы. • Уменьшение степени сатурации Hb эритроцитов в венозной крови. • Увеличение артерио-венозной разницы по кислороду. • Увеличение парциального напряжения углекислого газа (гиперкапния) в венозной крови, что является результатом активированного метаболизма в ткани мышцы. • Ацидоз в пробах крови, взятой из вены гиперфункционирующей мышцы. Смешанный тип гипоксии Смешанный тип гипоксии является результатом сочетания нескольких разновидностей гипоксии. Причины • Факторы, нарушающие два и более механизмов доставки и использования кислорода и субстратов метаболизма в процессе биологического окисления. † Примером могут служить наркотические вещества, способные в высоких дозах угнетать функцию сердца, нейронов дыхательного центра и активность ферментов тканевого дыхания. В результате развивается смешанная гипоксия гемодинамического, дыхательного и тканевого типов. † Острая массивная кровопотеря приводит как к снижению кислородной ёмкости крови (в связи с уменьшением содержания Hb), так и к расстройству кровообращения: развивается гемический и гемодинамический типы гипоксии. • Последовательное влияние факторов, ведущих к повреждению различных механизмов транспорта кислорода и субстратов метаболизма, а также процессов биологического окисления. Такая картина наблюдается при развитии тяжёлой гипоксии любого происхождения. Например, острая массивная потеря крови приводит к гемической гипоксии. Снижение притока крови к сердцу ведёт к уменьшению выброса крови, расстройствам гемодинамики, в том числе — коронарного и мозгового кровотока. Ишемия ткани мозга может обусловить расстройство функции дыхательного центра и вызвать респираторный тип гипоксии. Взаимное потенцирование нарушений гемодинамики и внешнего дыхания приводит к значительному дефициту в тканях кислорода и субстратов метаболизма, к грубым повреждениям мембран клеток, а также ферментов биологического окисления и, как следствие — к гипоксии тканевого типа. Патогенез гипоксии смешанного типа включает звенья механизмов развития разных типов гипоксии. Смешанная гипоксия часто характеризуется взаимопотенцированием отдельных её типов с развитием тяжёлых экстремальных и даже терминальных состояний. Изменения газового состава и рН крови при смешанной гипоксии определяются доминирующими расстройствами механизмов транспорта и утилизации кислорода, субстратов обмена веществ, а также процессов биологического окисления в разных тканях. Характер изменений при этом может быть разным и весьма динамичным. 17. Механизмы формирования гемодинамического (циркуляторного) и респираторного типов Гипоксия, или кислородное голодание — типический патологический процесс, развивающийся в результате недостаточного снабжения тканей кислородом или нарушения использования его тканями. Виды гипоксии В основу классификации, которая приводится ниже, положены причины и механизмы развития кислородного голодания. Различают следующие виды гипоксии: гипоксическую, дыхательную, гемическую, циркуляторную, тканевую и смешанную. Гипоксическая, или экзогенная, гипоксия развивается при снижении парциального давления кислорода во вдыхаемом воздухе. Наиболее типичным примером гипоксической гипоксии может служить горная болезнь. Ее проявления находятся в зависимости от высоты подъема. В эксперименте гипоксическая гипоксия моделируется при помощи барокамеры, а также с использованием дыхательных смесей, бедных кислородом. Дыхательная, или респираторная, гипоксия возникает в результате нарушения внешнего дыхания, в частности нарушения легочной вентиляции, кровоснабжения легких или диффузии в них кислорода, при которых нарушается оксигенация артериальной крови (см. раздел XX — "Патологическая физиология внешнего дыхания"). Кровяная, или гемическая, гипоксия возникает в связи с нарушениями в системе крови, в частности с уменьшением ее кислородной емкости. Гемическая гипоксия подразделяется наанемическую и гипоксию вследствие инактивации гемоглобина. Анемия как причина гипоксии описана в разделе XVIII ("Патологическая физиология системы крови"). В патологических условиях возможно образование таких соединений гемоглобина, которые не могут выполнять дыхательную функцию. Таким является карбоксигемоглобин — соединение гемоглобина с окисью углерода (СО). Сродство гемоглобина к СО в 300 раз выше, чем к кислороду, что обусловливает высокую ядовитость угарного газа: отравление наступает при ничтожных концентрациях СО в воздухе. При этом инактивируются не только гемоглобин, но и железосодержащие дыхательные ферменты. При отравлении нитратами, анилином образуется метгемоглобин, в котором трехвалентное железо не присоединяет кислород. Циркуляторная гипоксия развивается при местных и общих нарушениях кровообращения, причем в ней можно выделитьишемическую и застойную формы. Если нарушения гемодинамики развиваются в сосудах большого круга кровообращения, насыщение крови кислородом в легких может быть нормальным, однако при этом может страдать доставка его тканям. При нарушениях гемодинамики в системе малого круга страдает оксигенация артериальной крови. Циркуляторная гипоксия может быть вызвана не только абсолютной, но и относительной недостаточностью кровообращения, когда потребность тканей в кислороде превышает его доставку. Такое состояние может возникнуть, например, в сердечной мышце при эмоциональных напряжениях, сопровождающихся выделением адреналина, действие которого хотя и вызывает расширение венечных артерий, но в то же время значительно повышает потребность миокарда в кислороде. К этому виду гипоксии относится кислородное голодание тканей в результате нарушения микроциркуляции, которая, как известно, представляет собой капиллярный крово- и лимфоток, а также транспорт через капиллярную сеть и мембраны клеток. гипоксии. 18. Гемический и тканевой типы гипоксии. Возникает в результате неспособности крови при наличии нормального напряжения кислорода в легочных капиллярах связывать, переносить в ткани и отдавать нормальное количество кислорода, т.е. патогенетической основой данного типа гипоксии является уменьшение реальной кислородной емкости крови. Это может быть при: 1) уменьшении количества гемоглобина; 2) качественных изменениях гемоглобина наследственного и приобретенного генеза; 3) нарушениях физико-химических условий, необходимых для нормального поглощения кислорода гемоглобином из плазмы крови легочных капилляров и отдачи кислорода в тканевых капиллярах. Тканевой (гистотоксический) тип гипоксии Возникает в результате нарушения процессов биологического окисления в клетках при нормальном функционировании всех звеньев системы транспорта кислорода к месту его утилизации. Утилизация кислорода тканями может затрудняться в следующих случаях. 1. Действие различных ингибиторов ферментов биологического окисления: а) 1-й тип ингибирования - цианиды (соединение с Fe 3+ , что препятствует восстановлению железа дыхательных ферментов и переноса кислорода на цитохром); б) 2-й тип ингибирования - обратимое или необратимое связывание с функциональными группами белковой части фермента, играющимиважную роль в каталитической активности фермента (тяжелые металлы, алкилирующие агенты и др.); в) 3-й тип ингибирования - конкурентное торможение: взаимодействие ферментов с веществами, имеющими структурное сходство с естественными субстратами окисления (многие дикарбоновые кислоты). 2. Изменение физико-химических условий среды, существенно сказывающееся на активности ферментов (рН, температура, концентрация некоторых электролитов и др.). 3. Нарушение синтеза ферментов. 4. Дезорганизация мембранных структур клетки: а) перекисное окисление липидов (ПОЛ); б) активация фосфолипаз; в) осмотическое растяжение мембран; г) связывание белков поверхностью мембран и изменения конформации белков; д) действие избытка ионов кальция. Смешанный тип гипоксии 1. Один и тот же фактор вызывает сочетание двух или более типов гипоксии. 2. Первично возникает один тип гипоксии, а затем по мере развития болезни присоединяются другие типы. Защитно-приспособительные реакции при гипоксии 1. Срочная адаптация к гипоксии А.Приспособительные реакции системы внешнего дыхания: 1) увеличение альвеолярной вентиляции за счет углубления и учащения дыхания и мобилизации резервных альвеол; 2) увеличение легочного кровотока и повышение перфузионного давления в капиллярах легких; 3) возрастание проницаемости альвеолярно-капиллярных мембран для газов. Б.Приспособительные реакции в системе кровообращения: 1) развитие тахикардии, увеличение ударного и минутного объема сердца; 2) увеличение массы циркулирующей крови за счет выброса из кровяного депо; 3) увеличение системного артериального давления и скорости кровотока; 4) централизация кровообращения. В.Приспособительные реакции системы крови: 1) усиление диссоциации оксигемоглобиназа счет ацидоза и увеличение содержания в эритроцитах 2,3-дифосфоглицерата; 2) повышение кислородной емкости крови за счет усиления вымывания эритроцитов из костного мозга; 3) активация эритропоэза за счет усиления образования эритропоэтинов в почках и, возможно, других органах. Г.Тканевые приспособительные реакции: 1) ограничение функциональной активности органов и тканей, непосредственно не участвующих в обеспечении транспорта кислорода; 2) увеличение сопряжения окисления и фосфорилирования и активности ферментов дыхательной цепи; 3) усиление анаэробного синтеза АТФ за счет активации гликолиза. 1- я стадия - срочная адаптация- может развиваться по двум направлениям. 1. Если действие гипоксического фактора прекращается, то адаптация не развивается и функциональная система, ответственная за адаптацию к гипоксии, не закрепляется. 2. Если действие гипоксического фактора продолжается или периодически повторяется в течение достаточно длительного времени, то наступает 3-я стадия долгосрочной адаптации. 2- я стадия - переходная. При ней отмечается постепенное снижение активности систем, обеспечивающих приспособление организма к гипоксии, и ослабление стрессовых реакций на повторное действие гипоксического фактора. |