конспект-метрология. Конспект лекций по дисциплине Метрология, стандартизация, сертификация Казань 2012
Скачать 2.75 Mb.
|
Основной постулат метрологии - отсчёт - является случайным числом.Математическая модель измерения по шкале сравнения имеет вид, (1.1) где q- результат измерения (числовое значение величины Q); Q - значение измеряемой величины; [Q] – единица данной физической величины; V - масса тары (например, при взвешивании); U - слагаемая от аддитивного воздействия Q = q[Q] - U[Q] - V. (1.2) При однократном измеренииQi = qi[Q] + i, (1.3) где qi[Q] - результат измерения (однократного); i = - U[Q] – V - суммарная поправка. Значение измеряемой величины при многократном измерении. (1.4) Физические величины, их единицы и системы единиц Физическая величина – это характеристика физических объектов или явлений материального мира, общая для множества объектов или явлений в качественном отношении, но индивидуальная в количественном отношении для каждого из них. Например, масса, длина, площадь, температура и т.д. Каждая физическая величина имеет свои качественную и количественную характеристики. Качественная характеристика определяется тем, какое свойство материального объекта или какую особенность материального мира эта величина характеризует. Так, свойство "прочность" в количественном отношении характеризует такие материалы, как сталь, дерево, ткань, стекло и многие другие, в то время как количественное значение прочности для каждого из них совершенно разное Для выявления количественного различия содержания свойства в каком-либо объекте, отображаемого физической величиной, вводится понятие размера физической величины. Этот размер устанавливается в процессе измерения - совокупность операций, выполняемых для определения количественного значения величины (ФЗ «Об обеспечении единства измерений»). Целью измерений является определение значения физической величины - некоторого числа принятых для нее единиц (например, результат измерения массы изделия составляет 2 кг, диаметра детали - 12 мм и др.). В зависимости от степени приближения к объективности различают истинное, действительное и измеренное значения физической величины. Истинное значение физической величины - это значение, идеально отражающее в качественном и количественном отношениях соответствующее свойство объекта. Из-за несовершенства средств и методов измерений истинные значения величин практически получить нельзя. Их можно представить только теоретически. А значения величины, полученные при измерении, лишь в большей или меньшей степени приближаются к истинному значению. Действительное значение физической величины - это значение величины, найденное экспериментальным путем и настолько близкое к истинному значению, что для данной цели может быть использовано вместо него. Измеренное значение физической величины – это значение, полученное при измерении с применением конкретных методов и средств измерений. При планировании измерений следует стремиться к тому, чтобы номенклатура измеряемых величин соответствовала требованиям измерительной задачи (например, при контроле измеряемые величины должны отражать соответствующие показатели качества продукции). Для каждого параметра продукции должны соблюдаться требования: - корректность формулировки измеряемой величины, исключающая возможность различного толкования (например, необходимо четко определять, в каких случаях определяется "масса" или "вес" изделия, "объем" или "вместимость" сосуда и т.д.); - определенность подлежащих измерению свойств объекта (например, "температура в помещении не более ...°С "• допускает возможность различного толкования. Необходимо так изменить формулировку требования, чтобы было ясно, установлено ли это требование к максимальной или к средней температуре помещения, что будет в дальнейшем учтено при выполнении измерений); - использование стандартизованных терминов. Физические единицы Физическая величина, которой по определению присвоено числовое значение, равное единице, называется единицей физической величины. Многие единицы физических величин воспроизводятся мерами, применяемыми для измерений (например, метр, килограмм). На ранних стадиях развития материальной культуры (в рабовладельческих и феодальных обществах) существовали единицы для небольшого круга физических величин - длины, массы, времени, площади, объёма. Единицы физических величин выбирались вне связи друг с другом, и притом различные в разных странах и географических районах. Так возникло большое количество часто одинаковых по названию, но различных по размеру единиц - локтей, футов, фунтов. По мере расширения торговых связей между народами и развития науки и техники количество единиц физических величин увеличивалось и всё более ощущалась потребность в унификации единиц и в создании систем единиц. О единицах физических величин и их системах стали заключать специальные международные соглашения. В 18 в. во Франции была предложена метрическая система мер, получившая в дальнейшем международное признание. На её основе был построен целый ряд метрических систем единиц. В настоящее время происходит дальнейшее упорядочение единиц физических величин на базе Международной системы единиц (СИ). Единицы физических величин делятся на системные, т. е. входящие в какую-либо систему единиц, и внесистемные единицы (например, мм рт. ст., лошадиная сила, электрон-вольт). Системные единицы физических величин подразделяются на основные, выбираемые произвольно (метр, килограмм, секунда и др.), и производные, образуемые по уравнениям связи между величинами (метр в секунду, килограмм на кубический метр, ньютон, джоуль, ватт и т. п.). Для удобства выражения величин, во много раз больших или меньших единиц физических величин, применяются кратные единицы (например, километр - 103 м, киловатт - 103 Вт) и дольные единицы (например, миллиметр - 10-3 м, миллисекунда - 10-3 с).. В метрических системах единиц кратные и дельные единицы физических величин (за исключением единиц времени и угла) образуются умножением системной единицы на 10n, где n - целое положительное или отрицательное число. Каждому из этих чисел соответствует одна из десятичных приставок, принятых для образования кратных и дельных единиц. В 1960 г. на XI Генеральной конференции по мерам и весам Международной организации мер и весов (МОМВ) была принята Международная система единиц (SI). Основными единицами в международной системе единиц являются: метр (м) – длина, килограмм (кг) – масса, секунда (с) – время, ампер (А) – сила электрического тока, кельвин (К) – термодинамическая температура, кандела (кд) – сила света, моль – количество вещества. Наряду с системами физических величин в практике измерений по-прежнему используются так называемые внесистемные единицы. К их числу относятся, например: единицы давления – атмосфера, миллиметр ртутного столба, единица длины – ангстрем, единица количество теплоты – калория, единицы акустических величин – децибел, фон, октава, единицы времени – минута и час и т. п. Однако в настоящее время наметилась тенденция к их сокращению до минимума. Международная система единиц имеет целый ряд достоинств: универсальность, унификация единиц для всех видов измерений, когерентность (согласованность) системы (коэффициенты пропорциональности в физических уравнениях безразмерны), лучшее взаимопонимание между различными специалистами в процессе научно-технических и экономических связей между странами. В нашей стране Международная система единиц (СИ) применяется с 1 января 1963 года. В настоящее время применение единиц физических величин в России узаконено Конституцией РФ (ст. 71) (стандарты, эталоны, метрическая система и исчисление времени находятся в ведении Российской Федерации) и федеральным законом "Об обеспечении единства измерений". Статья 6 Закона определяет применение в Российской Федерации единиц величин Международной системы единиц, принятых Генеральной конференцией по мерам и весам и рекомендованные к применению Международной организацией законодательной метрологии. В то же время в Российской Федерации могут быть допущены к применению наравне с единицами величин СИ внесистемные единицы величин, наименование, обозначения, правила написания и применения которых устанавливаются Правительством Российской Федерации. В практической деятельности следует руководствоваться единицами физических величин, регламентированных ГОСТ 8.417-2002 «Государственная система обеспечения единства измерений. Единицы величин». Стандартом наряду с обязательным применением основных и производных единиц Международной системы единиц, а также десятичных кратных и дольных этих единиц допускается применять некоторые единицы, не входящие в СИ, их сочетания с единицами СИ, а также некоторые нашедшие широкое применение на практике десятичные кратные и дольные перечисленных единиц. Стандарт определяет правила образования наименований и обозначений десятичных кратных и дольных единиц СИ с помощью множителей (от 10–24 до 1024) и приставок, правила написания обозначений единиц, правили образования когерентных производных единиц СИ. Множители и приставки, используемые для образования наименований и обозначений десятичных кратных и дольных единиц СИ приведены в табл. 1.1. Таблица 1.1 Множители и приставки, используемые для образования наименований и обозначений десятичных кратных и дольных единиц СИ
Когерентные производные единицы Международной системы единиц, как правило, образуют с помощью простейших уравнений связи между величинами (определяющих уравнений), в которых числовые коэффициенты равны 1. Для образования производных единиц обозначения величин в уравнениях связи заменяют обозначениями единиц СИ. Если уравнение связи содержит числовой коэффициент, отличный от 1, то для образования когерентной производной единицы СИ в правую часть подставляют обозначения величин со значениями в единицах СИ, дающими после умножения на коэффициент общее числовое значение, равное 1. Классификация измерений Классификацию измерений можно проводить различными способами. 1. По способу получения информации: 1) Прямые измерения - измерения, при которых искомое значение величины находят непосредственно (путем сравнения с мерой этой величины). 2) Косвенные измерения – определение искомого значения физической величины на основании результатов прямых измерений других физических величин, функционально связанных с искомой величиной. 3) Совокупные измерения - проводимые одновременно измерения нескольких однородных величин, при которых искомые значения величин с определяют путем решения системы уравнений, получаемых при измерениях этих величин в различных сочетаниях. Пример: измерение взаимоиндуктивности между катушками. Имеются катушки L1и L2. Для получения искомого результата сначала соединяют катушки так, чтобы их магнитные поля складывались L01 = L1 + L2 + 2M, затем катушки соединяют так, чтобы их магнитные поля вычитались L02 = L1 + L2 - 2M. Значения L1 и L2 получают с помощью прямых измерений. Решение уравнений для L01 и L02 позволяет найти искомую величину - взаимоиндуктивности М = (L01 - L02)/4, измеряемую в генри. 4) Совместные измерения - проводимые измерения двух или нескольких неодноименных величин для определения зависимости между ними. 2. По характеру изменения измеряемой величины в процессе измерений 1) Статические измерения – измерение физической величины, принимаемой в соответствии с конкретной измерительной задачей за неизменную на протяжении времени измерения. 2) Динамические измерения - измерение изменяющейся по размеру физической величины. 3) Статистические измерения – измерения, связанные с определением характеристик случайных процессов, шумовых сигналов и др. 3. По количеству измерительной информации: 1) Однократное измерение – измерение выполненное один раз. Примечание. Как правило не более трех раз, результат при этом усредняется. Например, при измерении плотности жидкости ареометром образуется мениск, затрудняющий снятие показаний. Мы часто прибегаем к услугам других лиц: одного, другого. Результат мы находим как среднее арифметическое. 2) Многократное измерение - измерение физической величины одного и того же размера, результат которого получен из нескольких следующих друг за другом единичных измерений. При этом количество измерений таково, что можно применить статистические методы для обработки измерений. Примечание. Единичное измерение не следует путать с однократным измерением. Однократное измерение является частным случаем многократного измерения. Любое измерение является совокупностью операций, включающих и оценку погрешности результата измерения. Следующие друг за другом единичные измерения не являются однократными измерениями, так как оценку результата измерения и оценку погрешности при многократных измерениях производят для всей совокупности измерений, а не в отдельности. Ранее для таких следующих друг за другом единичных измерений существовали термины «наблюдение» или «замер». 4. По отношению к основным единицам: 1) Абсолютное измерение - измерение основанное на прямых измерениях одной или нескольких основных величин и/или использовании значений физических констант. Пример: E = mc2 - измерения абсолютные, с - константа. Контрпример: р = КQ2, где Dр - перепад давления, Q - расход на сужающем устройстве, К - коэффициент, зависящий от параметров сужающего устройства, плотности и вязкости вещества. 2) Относительное измерение - измерение отношения величины к одноименной величине, играющей роль единицы, или измерение изменения величины по отношению к одноименной величине, принимаемой за исходную. |