Высшая математика Питерцева. высшая математика питерцева. Курс лекций для дистанционного обучения студентов гуманитарных специальностей москва 2012 Авторы составители
Скачать 2.77 Mb.
|
Кубическая параболаКубическая парабола задается функцией . Вот знакомый со школы чертеж: Перечислим основные свойства функции Область определения – любое действительное число: . Область значений – любое действительное число: . Функция является нечётной. Если функция является нечётной, то ее график симметричен относительно начала координат. Аналитически нечётность функции выражается условием . Выполним проверку для кубической функции, для этого вместо «икс» подставим «минус икс»: , значит, функция является нечетной. Функция не ограничена. На языке пределов функции это можно записать так: , Кубическую параболу тоже эффективнее строить с помощью Наверняка, вы заметили, в чем ещё проявляется нечетность функции. Если мы нашли, что , то при вычислении уже не нужно ничего считать, автоматом записываем, что . Эта особенность справедлива для любой нечетной функции. Теперь немного поговорим о графиках многочленов. График любого многочлена третьей степени ( ) принципиально имеет следующий вид: В этом примере коэффициент при старшей степени , поэтому график развёрнут «наоборот». Принципиально такой же вид имеют графики многочленов 5-ой, 7-ой, 9-ой и других нечетных степеней. Чем выше степень, тем больше промежуточных «загибулин». Многочлены 4-ой, 6-ой и других четных степеней имеют график принципиально следующего вида: Эти знания полезны при исследовании графиков функций. График функцииВыполним чертеж: Основные свойства функции : Область определения: . Область значений: . То есть, график функции полностью находится в первой координатной четверти. Функция не ограничена сверху. Или с помощью предела: При построении простейших графиков с корнями также уместен поточечный способ построения, при этом выгодно подбирать такие значения «икс», чтобы корень извлекался нацело: На самом деле хочется разобрать еще примеры с корнями, например, , но они встречаются значительно реже. Я ориентируюсь на более распространенные случаи, и, как показывает практика, что-нибудь вроде приходиться строить значительно чаще. Если возникнет необходимость выяснить, как выглядят графики с другими корнями, то, рекомендую заглянуть в школьный учебник или математический справочник. График гиперболыОпять же вспоминаем тривиальную «школьную» гиперболу . Выполним чертеж: Основные свойства функции : Область определения: . Область значений: . Запись обозначает: «любое действительное число, исключая ноль» В точке функция терпит бесконечный разрыв. Или с помощью одностороннихпределов: , . Немного поговорим об односторонних пределах. Запись обозначает, что мы бесконечно близко приближаемся по оси к нулю слева. Как при этом ведёт себя график? Он уходит вниз на минус бесконечность, бесконечно близко приближаясь к оси . Именно этот факт и записывается пределом . Аналогично, запись обозначает, что мы бесконечно близко приближаемся по оси к нулю справа. При этом ветвь гиперболы уходит вверх на плюс бесконечность,бесконечно близко приближаясь к оси . Или коротко: . Такая прямая (к которой бесконечно близко приближается график какой-либо функции) называется асимптотой. В данном случае ось является вертикальной асимптотой для графика гиперболы при . Будет ГРУБОЙ ошибкой, если при оформлении чертежа по небрежности допустить пересечение графика с асимптотой. Также односторонние пределы , говорят нам о том, что гипербола не ограничена сверху и не ограничена снизу. Исследуем функцию на бесконечности: , то есть, если мы начнем уходить по оси влево (или вправо) на бесконечность, то «игреки» стройным шагом будут бесконечно близко приближаться к нулю, и, соответственно, ветви гиперболы бесконечно близкоприближаться к оси . Таким образом, ось является горизонтальной асимптотой для графика функции , если «икс» стремится к плюс или минус бесконечности. Функция является нечётной, а, значит, гипербола симметрична относительно начала координат. Данный факт очевиден из чертежа, кроме того, легко проверяется аналитически: . График функции вида ( ) представляют собой две ветви гиперболы. Если , то гипербола расположена в первой и третьей координатных четвертях(см. рисунок выше). Если , то гипербола расположена во второй и четвертой координатных четвертях. Пример 3 Построить правую ветвь гиперболы Используем поточечный метод построения, при этом, значения выгодно подбирать так, чтобы делилось нацело: Выполним чертеж: Не составит труда построить и левую ветвь гиперболы, здесь как раз поможет нечетность функции. Грубо говоря, в таблице поточечного построения мысленно добавляем к каждому числу минус, ставим соответствующие точки и прочерчиваем вторую ветвь. График показательной функцииВ данном параграфе я сразу рассмотрю экспоненциальную функцию , поскольку в задачах высшей математики в 95% случаев встречается именно экспонента. Напоминаю, что – это иррациональное число: , это потребуется при построении графика, который, собственно, я без церемоний и построю. Трёх точек, пожалуй, хватит: График функции пока оставим в покое, о нём позже. Основные свойства функции : Область определения: – любое «икс». Область значений: . Обратите внимание, что ноль не включается в область значений. Экспонента – функция положительная, то есть для любого «икс» справедливо неравенство , а сам график экспоненты полностью расположен в верхней полуплоскости. Функция не ограничена сверху: , то есть, если мы начнем уходить по оси вправо на плюс бесконечность, то соответствующие значения «игрек» стройным шагом будут тоже уходить вверх на по оси . Кстати, график экспоненциальной функции будет «взмывать» вверх на бесконечность очень быстро и круто, уже при Исследуем поведение функции на минус бесконечности: . Таким образом, ось является горизонтальной асимптотой для графика функции , если . Принципиально такой же вид имеет любая показательная функция , если . Функции , , будут отличаться только крутизной наклона графика, причем, чем больше основание, тем круче будет график. Обратите внимание, что во всех случаях графики проходят через точку , то есть .Это значение должен знать даже «двоечник». Теперь рассмотрим случай, когда основание . Снова пример с экспонентой – на чертеже соответствующий график прочерчен малиновым цветом? Что произошло? Ничего особенного – та же самая экспонента, только она «развернулась в другую сторону». Принципиально так же выглядят графики функций , и т. д. Должен сказать, что второй случай встречается на практике реже, но он встречается, поэтому я счел нужным включить его в данную статью. График логарифмической функцииРассмотрим функцию с натуральным логарифмом . Выполним поточечный чертеж: Если позабылось, что такое логарифм, отсылаю вас к школьным учебникам, академик Холмогоров свой хлеб все-таки не зря ест. Основные свойства функции : Область определения: Область значений: . Функция не ограничена сверху: , пусть и медленно, но ветка логарифма уходит вверх на бесконечность. Исследуем поведение функции вблизи нуля справа: . Таким образом, ось является вертикальной асимптотой для графика функции при «икс» стремящемся к нулю справа. Обязательно нужно знать и помнить типовое значение логарифма: . Принципиально так же выглядит график логарифма при основании : , , (десятичный логарифм по основанию 10) и т.д. При этом, чем больше основание, тем более пологим будет график. Случай рассматривать не будем, что-то я не припомню, когда последний раз строил график с таким основанием. Да и логарифм вроде в задачах высшей математики ооочень редкий гость. В заключение параграфа скажу еще об одном факте: Экспоненциальная функция и логарифмическая функция – это две взаимно обратные функции. Если присмотреться к графику логарифма, то можно увидеть, что это – та же самая экспонента, просто она расположена немного по-другому. Графики тригонометрических функцийС чего начинаются тригонометрические мучения в школе? Правильно. С синуса Построим график функции Данная линия называется синусоидой. Напоминаю, что «пи» – это иррациональное число: , и в тригонометрии от него в глазах рябит. Основные свойства функции : Данная функция является периодической с периодом . Что это значит? Посмотрим на отрезок . Слева и справа от него бесконечно повторяется точно такой же кусок графика. Область определения: , то есть для любого значения «икс» существует значение синуса. Область значений: . Функция является ограниченной: , то есть, все «игреки» сидят строго в отрезке . Такого не бывает: или , точнее говоря, бывает, но указанные уравнения не имеют решения. Синус – это функция нечетная, синусоида симметричная относительно начала координат, и справедлив следующий факт: . Таким образом, если в вычислениях встретится, например, , то минус терять здесь ни в коем случае нельзя! Он выносится: Как ведет себя синус на бесконечности? Попробуем провести исследование с помощью пределов: , Чему равны такие пределы? Запомните, данных пределов не существует. По вполне понятным причинам, график синуса болтается как неприкаянный, то дойдет единицы, то уйдет к минус единице и так до бесконечности. Вот вам пример, когда предела не существует. В высшей математике это можно встретить не очень часто, но такое понятие, как «предела не существует» – существует! В практических вычислениях желательно (и даже обязательно) знать и помнить следующие значения синуса: , , . Другие значения синуса (а также остальных тригонометрических функций) можно найти в методическом материале Тригонометрические таблицы. График косинуса Построим график функции График косинуса – это та же самая синусоида, сдвинутая вдоль оси на влево. Поэтому почти все свойства синуса справедливы и для косинуса. За некоторым, но существенным исключением. Косинус – это функция четная, ее график симметричен относительно оси , и справедлив следующий факт: . То есть, минус перед аргументом косинуса можно безболезненно убирать (или наоборот, ставить). В отличие от синуса в косинусе минус «бесследно пропадает». Для решения практических задач нужно знать и помнить следующие значения косинуса: , , . Графики тангенса и котангенса Построим график функции Основные свойства функции : Данная функция является периодической с периодом . То есть, достаточно рассмотреть отрезок , слева и справа от него ситуация будет бесконечно повторяться. Область определения: – все действительные числа, кроме , , , … и т. д. или коротко: , где – любое целое число. Множество целых чисел (… -4, -3, -2, -1, 0, 1, 2, 3, 4, …) в высшей математике обозначают жирной буквой Z. Область значений: . Функция не ограничена. В этом легко убедиться и аналитически: – если мы приближаемся по оси к значению справа, то ветка тангенса уходит на минус бесконечность, бесконечно близко приближаясь к своей асимптоте . – если мы приближаемся по оси к значению слева, то «игреки» шагают вверх на плюс бесконечность, а ветка тангенса бесконечно близко приближается к асимптоте . Тангенс – функция нечетная, как и в случае с синусом, минус из-под тангенса не теряется, а выносится: . В практических вычислениях полезно помнить следующие значения тангенса: , , , а также те точки, в которых тангенса не существует (см. график). График котангенса – это почти тот же самый тангенс, функции связаны тригонометрическим соотношением . Вот его график: Свойства попробуйте сформулировать самостоятельно, они практически такие же, как и у тангенса. Графики обратных тригонометрических функцийПостроим график арксинуса Перечислим основные свойства функции : Область определения: , не существует значений вроде или Область значений: , то есть, функция ограничена. Арксинус – функция нечетная, здесь минус опять же выносится: . В практических вычислениях полезно помнить следующие значения арксинуса: , , . Другие распространенные значения арксинуса (а также других «арков») можно найти с помощью таблицы значений обратных тригонометрических функций. Построим график арккосинуса Очень похоже на арксинус, свойства функции сформулируйте самостоятельно. Остановлюсь на единственном моменте. В данной статье очень много разговоров шло о четности и нечетности функций, и, возможно, у некоторых сложилось впечатление, что функция обязательно должна быть четной или нечетной. В общем случае, это, конечно, не так. Чаще всего, функция, которая вам встретится на практике – «никакая». В частности, арккосинус не является четной или нечетной функцией, он как раз «никакой», или, строго говоря – это «функция общего вида по отношению к свойству чётности». Построим график арктангенса Всего лишь перевернутая ветка тангенса. Перечислим основные свойства функции : Область определения: , или «множество всех действительных чисел» Область значений: , то есть, функция ограничена. У рассматриваемой функции есть две асимптоты: , . Арктангенс – функция нечетная: . Самые «популярные» значения арктангенса, которые встречаются на практике, следующие: , . К графику арккотангенса приходиться обращаться значительно реже, но, тем не менее, вот его чертеж: Свойства арккотангенса вы вполне сможете сформулировать самостоятельно. Отмечу, что арккотангенс, как и арккосинус, не является четной или нечетной функцией, а является «функцией общего вида по отношению к свойству чётности». Пожалуй, для начала хватит. К этой странице придется частенько обращаться в ходе изучения самых различных разделов курса высшей математики. |