Высшая математика Питерцева. высшая математика питерцева. Курс лекций для дистанционного обучения студентов гуманитарных специальностей москва 2012 Авторы составители
Скачать 2.77 Mb.
|
1.3. ЧислаНаиболее общие закономерности и законы экономических явлений выясняются путем качественного анализа, но конкретное выражение их возможно лишь с помощью меры и числа. Число - важнейшее математическое понятие, меняющееся на протяжении веков. Первые представления о числе возникли из счета людей, животных, плодов, различных изделий и пр. Результатом являются натуральные числа: 1, 2, 3, 4… При счете отдельных предметов единица есть наименьшее число, и делить ее на доли не нужно, а иногда и нельзя, однако уже при грубых измерениях величин приходится делить 1 на доли. Исторически первым расширением понятия числа является присоединение к натуральному числу дробных чисел. Дробью называется часть (доля) единицы или несколько равных ее частей. Дроби обозначаются, как : , где m и n - целые числа; - это сокращение дроби; а - это расширение дроби. Дроби со знаменателем 10 - это десятичные дроби: . Среди десятичных дробей особое место занимают периодические дроби: 0,2525…=0,(25)= - чистая периодическая дробь, 1,2555…=1,2(5)= - смешанная периодическая дробь. Дальнейшее расширение понятия числа вызвано уже развитием самой математики (алгебры). Декарт в 17 веке вводит понятие отрицательного числа. Числа целые (положительные и отрицательные), дробные (положительные и отрицательные) и нуль получили название рациональных чисел. Всякое рациональное число может быть записано в виде дроби конечной и периодической. Для изучения непрерывно изменяющихся переменных величин оказалось необходимым новое расширение понятия числа - введение действительных (вещественных) чисел - присоединением к рациональным числам иррациональных: иррациональные числа - это бесконечные десятичные непериодические дроби. Иррациональные числа появились при измерении несоизмеримых отрезков (сторона и диагональ квадрата). В алгебре иррациональные числа появились при извлечении корней . Примером трансцендентного, или иррационального числа являются числа π, е. Все действительные числа можно изобразить на числовой оси. Числовая ось (числовая прямая) это: а) горизонтальная прямая линия с выбранным на ней направлением; б) на оси задано начало отсчета – нулевая точка 0; в) на оси задана единица масштаба. 0 х -2 -1 1 2 3 2. Матрицы. Действия с матрицамиДанное методическое пособие поможет Вам научиться выполнять действия с матрицами: сложение (вычитание) матриц, транспонирование матрицы, умножение матриц, нахождение обратной матрицы. Весь материал изложен в простой и доступной форме, приведены соответствующие примеры, таким образом, даже неподготовленный человек сможет научиться выполнять действия с матрицами. Для самоконтроля и самопроверки Вы можетебесплатно скачать матричный калькулятор >>>. Я буду стараться минимизировать теоретические выкладки, кое-где возможны объяснения «на пальцах» и использование ненаучных терминов. Любители основательной теории, пожалуйста, не занимайтесь критикой, наша задача – научиться выполнять действия с матрицами. Начнем. Матрица – это прямоугольная таблица каких-либо элементов. В качестве элементов мы будем рассматривать числа, то есть числовые матрицы. ЭЛЕМЕНТ – это термин. Термин желательно запомнить, он будет часто встречаться, не случайно я использовал для его выделения жирный шрифт. Обозначение: матрицы обычно обозначают прописными латинскими буквами Пример: рассмотрим матрицу «два на три»: Данная матрица состоит из шести элементов: Все числа (элементы) внутри матрицы существуют сами по себе, то есть ни о каком вычитании речи не идет: Это просто таблица (набор) чисел! Также договоримся не переставлять числа, если иного не сказано в объяснениях. У каждого числа свое местоположение, и перетасовывать их нельзя! Рассматриваемая матрица имеет две строки: и три столбца: СТАНДАРТ: когда говорят о размерах матрицы, то сначала указывают количество строк, а только потом – количество столбцов. Мы только что разобрали по косточкам матрицу «два на три». Если количество строк и столбцов матрицы совпадает, то матрицу называют квадратной, например: – матрица «три на три». Если в матрице один столбец или одна строка , то такие матрицы также называют векторами. На самом деле понятие матрицы мы знаем еще со школы, рассмотрим, например точку с координатами «икс» и «игрек»: . По существу, координаты точки записаны в матрицу «один на два». Кстати, вот Вам и пример, почему порядок чисел имеет значение: и – это две совершенно разные точки плоскости. Теперь переходим непосредственно к изучению действий с матрицами: 1) Действие первое. Вынесение минуса из матрицы (внесение минуса в матрицу). Вернемся к нашей матрице . Как вы наверняка заметили, в данной матрице слишком много отрицательных чисел. Это очень неудобно с точки зрения выполнения различных действий с матрицей, неудобно писать столько минусов, да и просто в оформлении некрасиво выглядит. Вынесем минус за пределы матрицы, сменив у КАЖДОГО элемента матрицы знак: У нуля, как Вы понимаете, знак не меняется, ноль – он и в Африке ноль. Обратный пример: . Выглядит безобразно. Внесем минус в матрицу, сменив у КАЖДОГО элемента матрицы знак: Ну вот, гораздо симпатичнее получилось. И, самое главное, выполнять какие-либо действия с матрицей будет ПРОЩЕ. Потому-что есть такая математическая народная примета: чем больше минусов – тем больше путаницы и ошибок. 2) Действие второе. Умножение матрицы на число. Пример: Всё просто, для того чтобы умножить матрицу на число, нужно каждый элемент матрицы умножить на данное число. В данном случае – на тройку. Еще один полезный пример: – умножение матрицы на дробь Сначала рассмотрим то, чего делать НЕ НАДО: Вносить дробь в матрицу НЕ НУЖНО, во-первых, это только затрудняет дальнейшие действия с матрицей, во-вторых, затрудняет проверку решения преподавателем (особенно, если – окончательный ответ задания). И, тем более, НЕ НАДО делить каждый элемент матрицы на минус семь: Из статьи Математика для чайников или с чего начать, мы помним, что десятичных дробей с запятой в высшей математике стараются всячески избегать. Единственное, что желательно сделать в этом примере – это внести минус в матрицу: А вот если бы ВСЕ элементы матрицы делились на 7 без остатка, то тогда можно (и нужно!) было бы поделить. Пример: В этом случае можно и НУЖНО умножить все элементы матрицы на , так как все числа матрицы делятся на 2 без остатка. Примечание: в теории высшей математики школьного понятия «деление» нет. Вместо фразы «это поделить на это» всегда можно сказать «это умножить на дробь». То есть, деление – это частный случай умножения. 3) Действие третье. Транспонирование матрицы Для того чтобы транспонировать матрицу, нужно ее строки записать в столбцы транспонированной матрицы. Пример: Транспонировать матрицу Строка здесь всего одна и, согласно правилу, её нужно записать в столбец: – транспонированная матрица. Транспонированная матрица обычно обозначается надстрочным индексом или штрихом справа вверху. Пошаговый пример: Транспонировать матрицу Сначала переписываем первую строку в первый столбец: Потом переписываем вторую строку во второй столбец: И, наконец, переписываем третью строку в третий столбец: Готово. Грубо говоря, транспонировать – это значит повернуть матрицу набок. 4) Действие четвертое. Сумма (разность) матриц. Сумма матриц действие несложное. НЕ ВСЕ МАТРИЦЫ МОЖНО СКЛАДЫВАТЬ. Для выполнения сложения (вычитания) матриц, необходимо, чтобы они были ОДИНАКОВЫМИ ПО РАЗМЕРУ. Например, если дана матрица «два на два», то ее можно складывать только с матрицей «два на два» и никакой другой! Пример: Сложить матрицы и Для того чтобы сложить матрицы, необходимо сложить их соответствующие элементы: Для разности матриц правило аналогичное, необходимо найти разность соответствующих элементов. Пример: Найти разность матриц , А как решить данный пример проще, чтобы не запутаться? Целесообразно избавиться от лишних минусов, для этого внесем минус в матрицу : Примечание: в теории высшей математики школьного понятия «вычитание» нет. Вместо фразы «из этого вычесть это» всегда можно сказать «к этому прибавить отрицательное число». То есть, вычитание – это частный случай сложения. 5) Действие пятое. Умножение матриц. Чем дальше в лес, тем толще партизаны. Скажу сразу, правило умножения матриц выглядит очень странно, и объяснить его не так-то просто, но я все-таки постараюсь это сделать, используя конкретные примеры. Какие матрицы можно умножать? Чтобы матрицу можно было умножить на матрицу необходимо, чтобы число столбцов матрицы равнялось числу строк матрицы . Пример: Можно ли умножить матрицу на матрицу ? , значит, умножать данные матрицы можно. А вот если матрицы переставить местами, то, в данном случае, умножение уже невозможно! , следовательно, выполнить умножение невозможно, и вообще, такая запись не имеет смысла Не так уж редко встречаются задания с подвохом, когда студенту предлагается умножить матрицы, умножение которых заведомо невозможно. Следует отметить, что в ряде случаев можно умножать матрицы и так, и так. Например, для матриц, и возможно как умножение , так и умножение Как умножить матрицы? Умножение матриц лучше объяснить на конкретных примерах, так как строгое определение введет в замешательство (или помешательство) большинство читателей. Начнем с самого простого: Пример: Умножить матрицу на матрицу Я буду сразу приводить формулу для каждого случая: – попытайтесь сразу уловить закономерность. Пример сложнее: Умножить матрицу на матрицу Формула: В результате получена так называемая нулевая матрица. Попробуйте самостоятельно выполнить умножение (правильный ответ ). Обратите внимание, что ! Это почти всегда так! Таким образом, переставлять матрицы в произведении нельзя! Если в задании предложено умножить матрицу на матрицу , то и умножать нужно именно в таком порядке. Ни в коем случае не наоборот. Переходим к матрицам третьего порядка: Умножить матрицу на матрицу Формула очень похожа на предыдущие формулы: А теперь попробуйте самостоятельно разобраться в умножении следующих матриц: Умножьте матрицу на матрицу Вот готовое решение, но постарайтесь сначала в него не заглядывать! Будет время, распишу подробнее 6) Действие шестое. Нахождение обратной матрицы. Данная тема достаточно обширна, и я вынес данный вопрос на отдельную страницу. |