Высшая математика Питерцева. высшая математика питерцева. Курс лекций для дистанционного обучения студентов гуманитарных специальностей москва 2012 Авторы составители
Скачать 2.77 Mb.
|
2.3. Решение системы линейных уравненийНа данном уроке мы рассмотрим методы решения системы линейных уравнений. В курсе высшей математики системы линейных уравнений требуется решать как в виде отдельных заданий, например, «Решить систему по формулам Крамера», так и в ходе решения остальных задач. С системами линейных уравнений приходиться иметь дело практически во всех разделах высшей математики. Сначала немного теории. Что в данном случае обозначает математическое слово «линейных»? Это значит, что в уравнения системы все переменные входят в первой степени: без всяких причудливых вещей вроде и т.п., от которых в восторге бывают только участники математических олимпиад. В высшей математике для обозначения переменных используются не только знакомые с детства буквы . Довольно популярный вариант – переменные с индексами: . Либо начальные буквы латинского алфавита, маленькие и большие: Не так уж редко можно встретить греческие буквы: – известные многим «альфа, бета, гамма». А также набор с индексами, скажем, с буквой «мю»: Использование того или иного набора букв зависит от раздела высшей математики, в котором мы сталкиваемся с системой линейных уравнений. Так, например, в системах линейных уравнений, встречающихся при решении интегралов, дифференциальных уравнений традиционно принято использовать обозначения Но как бы ни обозначались переменные, принципы, методы и способы решения системы линейных уравнений от этого не меняются. Таким образом, если Вам встретится что-нибудь страшное типа , не спешите в страхе закрывать задачник, в конце-концов, вместо можно нарисовать солнце, вместо – птичку, а вместо – рожицу (преподавателя). И, как ни смешно, систему линейных уравнений с данными обозначениями тоже можно решить. Что-то у меня есть такое предчувствие, что статья получится довольно длинной, поэтому небольшое оглавление. Итак, последовательный «разбор полётов» будет таким:: – Решение системы линейных уравнений методом подстановки («школьный метод»). – Решение системы методом почленного сложения (вычитания) уравнений системы. –Решение системы по формулам Крамера. –Решение системы с помощью обратной матрицы. –Решение системы методом Гаусса. С системами линейных уравнений все знакомы из школьного курса математики. По сути дела, начинаем с повторения. Решение системы линейных уравнений методом подстановкиДанный метод также можно назвать «школьным методом» или методом исключения неизвестных. Образно говоря, его еще можно назвать «недоделанным методом Гаусса». Пример 1 Решить систему линейных уравнений: Здесь у нас дана система из двух уравнений с двумя неизвестными. Обратите внимание, что свободные члены (числа 5 и 7) расположены в левой части уравнения. Вообще говоря, без разницы, где они находятся, слева или справа, просто в задачах по высшей математике нередко они расположены именно так. И такая запись не должна приводить в замешательство, при необходимости систему всегда можно записать «как обычно»: . Не забываем, что при переносе слагаемого из части в часть у него нужно поменять знак. Что значит решить систему линейных уравнений? Решить систему уравнений – это значит найти такие значения переменных, которые обращают КАЖДОЕ уравнение системы в верное равенство.Это утверждение справедливо для любых систем уравнений с любым количеством неизвестных. Решаем. Из первого уравнения выражаем: Полученное выражение подставляем во второе уравнение: Раскрываем скобки, приводим подобные слагаемые и находим значение : Далее вспоминаем про то, от чего плясали: Значение нам уже известно, осталось найти: Ответ: После того, как решена ЛЮБАЯ система уравнений ЛЮБЫМ способом, настоятельно рекомендую выполнить проверку на черновике или калькуляторе. Благо, делается это легко и быстро. 1) Подставляем найденный ответ в первое уравнение : – получено верное равенство. 2) Подставляем найденный ответ во второе уравнение : – получено верное равенство. Или, если говорить проще, «всё сошлось» Рассмотренный способ решения не является единственным, из первого уравнения можно было выразить , а не . Можно наоборот – что-нибудь выразить из второго уравнения и подставить в первое уравнение. Кстати, заметьте, самый невыгодный из четырех способов – выразить из второго уравнения: Получаются дроби, а оно зачем? Есть более рациональное решение. Тем не менее, в ряде случаев без дробей всё-таки не обойтись. В этой связи обращаю Ваше вниманиена то, КАК я записал выражение. Не так: , и ни в коем случае не так: . Если в высшей математике Вы имеете дело с дробными числами, то все вычисления старайтесь проводить в обыкновенных правильных и неправильных дробях. Именно , а не или ! Запятую можно использовать лишь иногда, в частности, если – это окончательный ответ какой-нибудь задачи, и с этим числом больше не нужно выполнять никаких действий. Многие читатели наверняка подумали «да зачем такое подробное объяснение, как для класса коррекции, и так всё понятно». Ничего подобного, вроде бы такой простой школьный пример, а сколько ОЧЕНЬ важных выводов! Вот еще один: Любое задание следует стремиться выполнить самым рациональным способом.Хотя бы потому, что это экономит время и нервы, а также снижает вероятность допустить ошибку. Если в задаче по высшей математике Вам встретилась система двух линейных уравнений с двумя неизвестными, то всегда можно использовать метод подстановки (если не указано, что систему нужно решить другим методом) Ни один преподаватель не Более того, в ряде случаев метод подстановки целесообразно использовать и при большем количестве переменных. Пример 2 Решить систему линейных уравнений с тремя неизвестными Похожая система уравнений часто возникает при использовании так называемого метода неопределенных коэффициентов, когда мы находим интеграл от дробно-рациональной функции. Рассматриваемая система взята мной как раз оттуда. При нахождении интеграла – цель быстро найти значения коэффициентов , а не изощряться формулами Крамера, методом обратной матрицы и т.д. Поэтому, в данном случае уместен именно метод подстановки. Когда дана любая система уравнений, в первую очередь желательно выяснить, а нельзя ли ее как-нибудь СРАЗУ упростить? Анализируя уравнения системы, замечаем, что второе уравнение системы можно разделить на 2, что мы и делаем: Справка: математический знак обозначает «из этого следует это», он часто используется в ходе решения задач. Теперь анализируем уравнения, нам нужно выразить какую-нибудь переменную через остальные. Какое уравнение выбрать? Наверное, Вы уже догадались, что проще всего для этой цели взять первое уравнение системы: Здесь без разницы, какую переменную выражать, можно было с таким же успехом выразить или . Далее, выражение для подставляем во второе и третье уравнения системы: Раскрываем скобки и приводим подобные слагаемые: Третье уравнение делим на 2: Из второго уравнения выразим и подставим в третьей уравнение: Практически всё готово, из третьего уравнения находим: Из второго уравнения: Из первого уравнения: Ответ: Проверка: Подставим найденные значения переменных в левую часть каждого уравнения системы: 1) 2) 3) Получены соответствующие правые части уравнений, таким образом, решение найдено верно. Пример 3 Решить систему линейных уравнений с 4 неизвестными Это пример для самостоятельного решения (ответ в конце урока). |