Лекция. Лекции ТОНХ рус. Лекции по дисциплине теоретические основы неорганической химии для студентов специальности
Скачать 1.02 Mb.
|
Контрольные вопросы1Растворимость Термодинамика процесса растворения2. Коэффициент растворимости3. Определение концентраций растворов 25-26 лекции Теория электролитической диссоциации 1. Основные понятия электролитической диссоциации. Электролиты и неэлектролиты 2. Работы С.Аррениуса 3. Степень электролитической диссоциации 1. Основные понятия электролитической диссоциации. Электролиты и неэлектролиты. Едва ли не в XVIII в. естествоиспытатели установили, что все растворы можно разделить на две большие группы - на те, которые не проводят электрический, ток, и на растворы-проводники, или проводящие растворы. В XIX в. свойства проводящих растворов изучались активно. Ом установил, что растворы-проводники проводят ток по тем же законам, что и проводники-металлы. Фарадей с присущей этому великому ученому глубиной и обстоятельностью изучил явление электролиза и установил его основные законы. Электрическим током была разложена на составные элементы вода. Были сконструированы многие гальванические батареи. В первые восемь десятилетий XIX в. было открыто многое из того, что сегодня лежит в основании электрохимии - науки, изучающей взаимосвязь химических и электрических явлений. Схема Система понятий теории электролитической диссоциации Вещества-электролиты Сущность процесса диссоциации Строение электролитов Особенности диссоциации Условия диссоциации Механизм диссоциации Классификация электролитов Ионы в растворе. Свойства ионов Реакции ионов в растворе Реакции ионного обмена Окислительно-восстановительные реакции Гидролиз солей Система понятий теории электролитической диссоциации и структура, ее содержания отражены в схеме 3.3. Схема показывает содержание каждого блока системы понятий и их взаимосвязи. Рассмотрим последовательность их введения и ее обоснование. Электролиты – вещества, водные растворы и расплавы которых проводят электрический ток. Эти вещества имеют ионную и ковалентную сильнополярную связи. Электролитами являются кислоты, основания, соли. 2. Работы С.Аррениуса Поведение электролитов в растворе объясняет теория электролитической диссоциации, сформулированная Сванте Аррениусом в 1887 году. Если свести сущность теории электролитической диссоциации (от лат. dissociatio - разъединение) Аррениуса к одной фразе, то эта фраза звучала бы приблизительно так: Электролиты (т.е. вещества, растворы которых проводят электрический ток) при растворении распадаются на ионы. Это сегодня кажется, что теорию, в основе которой лежит столь очевидная предпосылка, ничего не стоило создать. А тогда, в 1884 г., Аррениус, по правде говоря, поостерегся высказывать столь категорически основную идею своей теории - у него были все основания предполагать, что эта идея будет коллегами раскритикована начисто. Поэтому Аррениус в первой публикации, посвященной теории электролитической диссоциации, предпочел затемнить наиболее острые положения не очень вразумительной терминологией. Аррениус знал, по какому пункту будут его критиковать оппоненты, знал и боялся этой критики, потому что ответа на эти возражения он не имел. И что хуже всего - Аррениус не имел даже приблизительных представлений о том, почему электролиты при растворении распадаются на ионы, что заставляет оторваться друг от друга положительно заряженный катион и отрицательно заряженный анион. Но, с другой стороны, все эксперименты, которые он провел, да и эксперименты нескольких предшествующих поколений экспериментаторов, очень обширный круг физических и химических свойств растворов электролитов - все это закономерно приводило к выводу, что в растворах электролитов действительно существуют ионы. Однако большинство учёных идею о диссоциации в растворах не приняли. Ведь в конце XIX в. ещё не было ясного понимания, чем ионы отличаются от нейтральных атомов. Казалось невероятным, что, например, хлорид натрия в воде может существовать в виде отдельных ионов натрия и хлора: как известно, натрий бурно реагирует с водой, а раствор хлора имеет жёлто-зелёный цвет и ядовит. Теория состоит из следующих положений: При растворении в воде электролиты распадаются на положительно и отрицательно заряженные ионы. Процесс распада электролита на ионы называется электролитической диссоциацией. Электролитическая диссоциация – процесс обратимый. Обратная реакция называется моляризацией. Под действием электрического напряжения катионы двигаются к катоду, а анионы – к аноду. Степень электролитической диссоциации зависит от природы электролита, температуры, концентрации. 3. Степень электролитической диссоциации – это величина, которая показывает отношение числа распавшихся на ионы молекул к общему числу молекул в растворе. Обозначается a. Измеряется в % (долях). N – общее число молекул в растворе, n – число диссоциированных молекул. Контрольные вопросы1Электролитическая диссоциация 2.Степень электролитической диссоциации 27-28 лекции Гидролиз Окислительно-восстановительные реакции , Электролиз Водородный показа́тель Водородный показа́тель, pH (лат. pondus Hydrogenii — «вес водорода»; в русской традиции произносится «пэ-аш») — мера активности (в очень разбавленных растворах она эквивалентна концентрации) ионов водорода в растворе, количественно выражающая его кислотность. Равен по модулю и противоположен по знаку десятичному логарифму активности водородных ионов, выраженной в молях на один литр: {\displaystyle {\mbox{pH}}=-\lg \left[{\mbox{H}}^{+}\right]} Это понятие было введено в 1909 году датским химиком Сёренсеном. Показатель называется pH, по первым буквам латинских слов potentia hydrogeni — сила водорода, или pondus hydrogeni — вес водорода. Вообще в химии сочетанием pH принято обозначать величину, равную −lg [H+], а буква H в данном случае обозначает концентрацию ионов водорода (H+), или, точнее, термодинамическую активность гидроксоний-ионов. Уравнения, связывающие pH и pOH Вывод значения pH В чистой воде концентрации ионов водорода ([H+]) и гидроксид-ионов ([OH−]) одинаковы и при 22 °C составляют по 10−7 моль/л, это напрямую следует из определения ионного произведения воды, которое равно [H+] · [OH−] и составляет 10−14 моль²/л² (при 25 °C). Когда концентрации обоих видов ионов в растворе одинаковы, говорят, что раствор имеет нейтральную реакцию. При добавлении к воде кислоты концентрация ионов водорода увеличивается (на самом деле увеличивается не концентрация собственно ионов — иначе как способность кислот «присоединять» ион водорода могла бы приводить к этому — а концентрация именно таких соединений с «присоединённым» к кислоте ионом водорода), а концентрация гидроксид-ионов соответственно уменьшается, при добавлении основания — наоборот, повышается содержание гидроксид-ионов, а концентрация ионов водорода падает. Когда [H+] > [OH−] говорят, что раствор является кислотным, а при [OH−] > [H+] — основным. Для удобства представления, чтобы избавиться от отрицательного показателя степени, вместо концентраций ионов водорода пользуются их десятичным логарифмом, взятым с обратным знаком, который, собственно, и является водородным показателем — pH. Водородный показатель – рН – это мера активности (в случае разбавленных растворов отражает концентрацию) ионов водорода в растворе, количественно выражающая его кислотность, вычисляется как отрицательный (взятый с обратным знаком) десятичный логарифм активности водородных ионов, выраженной в молях на литр. pН = – lg[H+] Это понятие было введено в 1909 году датским химиком Сёренсеном. Показатель называется pH, по первым буквам латинских слов potentia hydrogeni – сила водорода, или pondus hydrogenii – вес водорода. Несколько меньшее распространение получила обратная pH величина – показатель основности раствора, pOH, равная отрицательному десятичному логарифму концентрации в растворе ионов OH: рОН = – lg[OH–] В чистой воде при 25°C концентрации ионов водорода ([H+]) и гидроксид-ионов ([OH-]) одинаковы и составляют 10-7моль/л, это напрямую следует из константы автопротолиза воды Кw , которую иначе называют ионным произведением воды: Кw = [H+] · [OH–] =10–14 [моль2/л2] (при 25°C) рН + рОН = 14 Когда концентрации обоих видов ионов в растворе одинаковы, говорят, что раствор имеет нейтральную реакцию. При добавлении к воде кислоты концентрация ионов водорода увеличивается, а концентрация гидроксид-ионов соответственно уменьшается, при добавлении основания – наоборот, повышается содержание гидроксид-ионов, а концентрация ионов водорода падает. Когда [H+] > [OH–] говорят, что раствор является кислым, а при [OH–] > [H+] – щелочным. Определение рН Для определения значения pH растворов широко используют несколько способов. 1) Водородный показатель можно приблизительно оценивать с помощью индикаторов, точно измерять pH-метром или определять аналитически путём, проведением кислотно-основного титрования. Для грубой оценки концентрации водородных ионов широко используются кислотно-основные индикаторы – органические вещества-красители, цвет которых зависит от pH среды. К наиболее известным индикаторам принадлежат лакмус, фенолфталеин, метиловый оранжевый (метилоранж) и другие. Индикаторы способны существовать в двух по-разному окрашенных формах – либо в кислотной, либо в основной. Изменение цвета каждого индикатора происходит в своём интервале кислотности, обычно составляющем 1-2 единицы Гидролиз Гидролизом называется взаимодействие вещества с водой, при котором составные части вещества соединяются с составными частями воды. Такое определение охватывает и гидролиз органических соединений - сложных эфиров, жиров, углеводов, белков - и гидролиз неорганических веществ - солей, галогенов, галогенидов, неметаллов и т.д. Настоящая работа посвящена гидролизу солей - одному из важных примеров гидролиза веществ, который наиболее хорошо изучен, а так же особенностям почвенного гидролиза солей и его значению в сельском хозяйстве. 1. Гидролиз солей В случае реакций нейтрализации, в которых участвуют слабые кислоты и основания, реакции протекают не до конца. Это значит, что при этом в той или иной степени протекает и обратная реакция (взаимодействие соли с водой), приводящая к образованию кислоты и основания. Это и есть гидролиз соли. В реакции гидролиза вступают соли, образованные слабой кислотой и сильным основанием, или слабым основанием и сильной кислотой, или слабой кислотой и слабым основанием. Соли, образованные сильной кислотой и сильным основанием, гидролизу не подвергаются; нейтрализация в этом случае сводится к процессу H + + OH - =H2O, а обратная реакция - диссоциация молекул воды на ионы - протекает в ничтожно малой степени: при 25 0С ионное произведение воды КW = CН+. СОН - = 10-14. 1.1 Характеристики гидролизаРассмотрим гидролиз соли, образованной одноосновной кислотой и одновалентным металлом. Запишем уравнение гидролиза в общем виде. Пусть НА - кислота, МОН - основание, МА - образования или соль. Тогда уравнение гидролиза будет иметь вид: МА + Н2О НА + МОН. Будем рассматривать достаточно разбавленные растворы. Тогда равновесию реакции (1) при заданной температуре отвечает постоянная величина - константа равновесия
Где Сi - молярные концентрации веществ. Концентрация воды в разбавленных растворах представляет собой практически постоянную величину. Обозначая К. Сн2о = Кг, получим
Величина Кг называется константой гидролиза соли. Ее значение характеризует способность данной соли подвергаться гидролизу; чем больше Кг, тем в большей степени (при одинаковых температуре и концентрации соли) протекает гидролиз. Отношение числа молей соли, подвергшихся гидролизу (Сг), к общему числу молей соли в растворе (СМА), называется степенью гидролиза.
Для вещества типа МА величина Сг равна концентрации любого из продуктов гидролиза - реакции (1). Поэтому степень гидролиза может быть определена из соотношений вида:
Используя такие соотношения и выражение (2) для константы гидролиза, можно легко получить уравнение, связывающее степень и константу гидролиза 1.2 Гидролиз солей слабых кислот и сильных оснований Если соль образована слабой кислотой и сильным основанием, то реакцию гидролиза можно схематически изобразить так: М+ + А - + Н2О НА + М+ + ОН-. (4) Связывания иона гидроксония Н+ анионами слабой кислоты А - приводит нарушению равновесия реакции диссоциации воды Н2О Н+ + ОН- И появлению избыточной концентрации ОН-. При этом Сн+ Cон - и раствор имеет щелочную реакцию. Константа гидролиза реакции (4)
Слабая кислота НА, получающаяся при гидролизе, диссоциирует, хотя и в малой степени, на ионы: НА Н+ + А - (6) В противном случае гидролиз шел бы до конца - вся соль превращалась бы в НА и МОН. Выразив константу диссоциации слабой кислоты - константу равновесия реакции (6) - следующим образом:
Можно определить через нее отношение
Подставив (7) в (5), получим
Константа гидролиза равна отношению ионного произведения воды к константе диссоциации слабой кислоты. Н айдем степень гидролиза соли. Концентрация негидролизованной соли равна СМА (1 - ) . Негидролизованная соль в разбавленном растворе полностью диссоциирована на ионы и поэтому ее концентрация равна концентрации аниона СМА - = СМА (1 - ). (9) При гидролизе образуются эквивалентные количества молекул НА и ионов ОН-. Так как мы рассматриваем соль слабой кислоты, то НА диссоциированна в малой степени. Если пренебречь диссоциацией НА, то можно сказать что, Сон - = СНА. Молекула НА образуется из молекулы соли при гидролизе. Если гидролизовано СМА* молей, то Сон - = СНА= СМА*. (10) Подставив выражения (9) и (10) в уравнение (5), получим
Откуда СМА*2 + Кг * - Кг = 0 и = - |