Главная страница
Навигация по странице:

  • Понятие импульсного газа и точки его отбора на КС. Установка подготовки импульсного газа (УПИГ): принципиальная схема, состав оборудования, его назначение.

  • Назначение системы топливного и пускового газа, точки отбора из технологических коммуникаций КС. Принципиальная схема системы топливного и пускового газа: состав оборудования и его назначение.

  • Тема 1.6 Система маслоснабжения КС.

  • Агрегатная маслосистема и ее подсистемы: смазочная, система управления и гидравлическая. Смазочная система ГПА: состав оборудования, принцип работы.

  • Система уплотнения центробежного нагнетателя: основные узлы и принцип работы.

  • Системы охлаждения масла на КС: градирни и аппараты воздушного охлаждения (АВО масла).

  • Очистка турбинного масла на КС: маслоочистительные машины (для самостоятельного изучения).

  • Лекция №6 Тема 1.7 Газоперекачивающие агрегаты (ГПА) на КС и их компоновка. Типы газоперекачивающих агрегатов, применяемых на КС.

  • Классификация ГПА на КС по типу привода: газотурбинные ГПА, электроприводные агрегаты (ЭГПА) и газомотокомпрессорные установки (ГМК), их показатели.

  • Структура парка ГПА в системе ОАО «Газпром». Газотурбинные ГПА: стационарные, авиационные и судовые.

  • Общестанционные системы КС (демонстрация учебного видеофильма).

  • 2 Конспект лекций дисциплины. Лекция 1 Раздел Компрессорные станции магистральных газопроводов Тема Введение. Назначение и устройство компрессорных станций на магистральных газопроводах


    Скачать 19.77 Mb.
    НазваниеЛекция 1 Раздел Компрессорные станции магистральных газопроводов Тема Введение. Назначение и устройство компрессорных станций на магистральных газопроводах
    Анкор2 Конспект лекций дисциплины.doc
    Дата02.02.2017
    Размер19.77 Mb.
    Формат файлаdoc
    Имя файла2 Конспект лекций дисциплины.doc
    ТипЛекция
    #1876
    страница4 из 7
    1   2   3   4   5   6   7
    Тема 1.5 Системы подготовки импульсного, топливного и пускового газа на КС.

    Понятие импульсного газа и точки его отбора на КС. Установка подготовки импульсного газа (УПИГ): принципиальная схема, состав оборудования, его назначение.

    Импульсным называется газ, отбираемый из технологических трубопроводов обвязки КС для использования в пневмогидравлических системах приводов запорной арматуры: пневмоприводных кранов технологического, топливного и пускового газов, для подачи газа к контрольно-измерительным и регулирующим приборам. В пневмогидравлической системе привода крана производится преобразование потенциальной энергии сжатого газа в механическую работу по перемещению запорного шарового узла.

    Существуют три точки отбора импульсного газа из технологических трубопроводов КС (рис. 1.18): отбор до и после крана № 20; отбор из выходного трубопровода КС до узла охлаждения и отбор из входного трубопровода КС после узла очистки. Далее трубопровод импульсного газа объединяется в общий коллектор, откуда газ поступает на узел подготовки импульсного газа (УПИГ), где происходит его очистка и осушка.






    Рис. 1.18. Принципиальная схема отбора и разводки импульсного газа. Принципиальная схема системы подготовки импульсного газа приведена на рис. 1.17.

    В состав УПИГ входит следующее оборудование: фильтр-сепараторы, адсорберы, огневой подогреватель, газовый ресивер, запорная арматура, контрольно-измерительные приборы, трубопроводы и гибкие резиновые шланги.

    Фильтр-сепараторы предназначены для очистки импульсного газа от механических примесей и влаги. Адсорберы предназначены для осушки импульсного газа путем поглощения воды, находящейся в газе. Поглощение осуществляется адсорбентом, находящимся в полости адсорберов. В качестве адсорбента используются селикагель или циолит. Степень очистки и осушки импульсного газа должна исключать заедание и обмерзание исполнительных органов при низких температурах наружного воздуха.

    Как правило, из двух адсорберов в рабочем режиме поглощения влаги находится один. Другой адсорбер находится в режиме восстановления адсорбента. Восстановление осуществляется путем пропускания части подогретого до высокой температуры газа (около 300 °С) через увлажненный адсорберт. Дело в том, что при достижении предельной влажности, селикагель теряет способность дальнейшего поглощения влаги и для возобновления его адсорбционных свойств через него пропускают горячий теплоноситель. Осушку селикагеля проводят один раз в 2-3 месяца. Для подогрева газа используется огневой подогреватель. Цикл регенерации селикагеля длится примерно 4-6 ч, цикл охлаждения 2-4 ч.

    При эксплуатации УПИГ с помощью контрольно-измерительных приборов осуществляется контроль за давлением и температурой газа, его расходом и точкой росы, которая должна составлять - 25 °С.

    После УПИГ газ поступает ко всем общестанционным кранам на узел подключения, режимным и агрегатным кранам, а также на низкую сторону к кранам топливного и пускового газа.
    Назначение системы топливного и пускового газа, точки отбора из технологических коммуникаций КС. Принципиальная схема системы топливного и пускового газа: состав оборудования и его назначение.

    Система топливного и пускового газа предназначена для очистки, осушки и поддержания требуемого давления и расхода перед подачей его в камеру сгорания и на пусковое устройство (турбодетандер).Газ для этих систем, аналогично, как и для системы импульсного газа, отбирается из различных точек технологических коммуникаций КС: на узле подключения до и после крана № 20, из выходного коллектора пылеуловителей и выходного шлейфа компрессорного цеха - перед аппаратами воздушного охлаждения газа.

    Система топливного и пускового газа имеет блочное исполнение, и включает в себя следующее оборудование (рис. 1.19): циклонный сепаратор, или блок очистки, фильтр-сепаратор, или блок осушки, подогреватели, блок редуцирования пускового и топливного газа, трубопроводы, замерное устройство, краны № 9, 12, 14 и 15, а также стопорные и регулирующие клапаны топливной системы, пусковое устройство или турбодетандер (ТД).

    Работа системы осуществляется следующим образом: газ, отбираемый из технологических коммуникаций КС, поступает на блок очистки или газосепаратор 1, где происходит его очистка от механических примесей. Далее газ поступает в фильтр-сепаратор 2, где происходит его более глубокая очистка от механических примесей и влаги. Затем газ поступает в подогреватель 3 типа ПТПГ-30, где подогревается до температуры 45-50 °С. Огневой подогреватель представляет собой теплообменник, в котором трубный пучок газа высокого давления погружен в раствор диэтиленгликоля. Диэтиленгликоль подогревается за счет использования камеры сгорания этого устройства. Подогрев газа осуществляется с целью обеспечения устойчивой работы блоков редуцирования и недопущения его промерзания, что может нарушить устойчивую работу системы регулирования ГТУ.

    Перед блоком редуцирования газ разделяется на два потока: один направляется на блок редуцирования топливного газа 4, другой на блок редуцирования пускового газа 5.


    Топливный газ редуцируется до давления 0,6-2,5 МПа в зависимости от давления воздуха за осевым компрессором ГТУ. После блока редуцирования топливный газ поступает в сепаратор 6, где происходит его повторная очистка от выделившейся при редуцировании влаги, и затем в топливный коллектор. В камеру сгорания топливный газ поступает через кран № 12, стопорный (СК) и регулирующий (РК) клапаны. Краны № 14 и 15 используются для запальной и дежурной горелки в период пуска агрегата.

    Пусковой газ, пройдя систему редуцирования, снижает свое давление до 1,0-1,5 МПа и поступает через краны № 11 и 13 на вход в турбодетандер, где расширяясь до атмосферного давления, совершает полезную работу, идущую на раскрутку осевого компрессора и турбины высокого давления.
    Тема 1.6 Система маслоснабжения КС.

    Система маслоснабжения компрессорной станции включает в себя две маслосистемы: общецеховую и агрегатную.
    Общецеховая маслосистема: назначение и состав оборудования.


    Общецеховая маслосистема (рис. 1.20), предназначенная для приема, хранения и предварительной очистки масла перед подачей его в расходную емкость цеха. Эта система включает в себя: склад ГСМ 1 и помещение маслорегенерации 3. На складе имеются в наличии емкости 2 для чистого и отработанного масла. Объем емкостей для чистого масла подбирается исходя из обеспечения работы агрегатов сроком не менее 3 месяцев. В помещении склада ГСМ устанавливается емкость отрегенерированного масла и емкость отработанного масла, установка для очистки масла типа ПСМ-3000-1, насосы для подачи масла к потребителям, а также система маслопроводов с арматурой.

    После подготовки масла на складе ГСМ и проверки его качества, подготовленное масло поступает в расходную емкость. Объем расходной емкости выбирается равным объему маслосистемы ГПА, плюс 20 % для подпитки работающих агрегатов. Эта расходная емкость, оборудованная замерной линейкой, используется для заправки агрегатов маслом. Для газотурбинных ГПА применяется масло марки ТП-22С или ТП-22Б. Для организации движения масла между складом ГСМ и расходной емкостью, а также для подачи к ГПА чистого масла и откачки из него отработанного масла их соединяют с помощью маслопроводов. Эта система должна обеспечивать следующие возможности в подаче масла:

    -подачу чистого масла из расходного маслобака в маслобак ГПА, при этом линия чистого масла не должна иметь возможность смешиваться с отработанным маслом;

    -подачу отработанного масла из ГПА только в емкость отработанного масла;

    -аварийный слив и перелив масла из маслобака ГПА в аварийную емкость.

    Для аварийного слива необходимо использовать электроприводные задвижки, включаемые в работу в автоматическом режиме, например, при пожаре.

    Агрегатная маслосистема и ее подсистемы: смазочная, система управления и гидравлическая. Смазочная система ГПА: состав оборудования, принцип работы.

    На рис. 1.21 приведена схема маслосистемы для агрегата ГТК-25И фирмы "Нуово-Пиньоне", которая включает в себя: смазочную систему, систему управления и гидравлическую систему, обеспечивающую подачу масла высокого давления на привод стопорного и регулирующего клапанов топливного газа, узла управления поворотными сопловыми лопатками ТНД, а также подачу масла в систему уплотнения центробежного нагнетателя.

    Смазочная система ГПА включает в себя три масляных насоса 6 (главный, вспомогательный и аварийный), маслобак 1 с напорными и сливными трубопроводами 9, предохранительный клапан 7, охладитель масла 2, два основных фильтра со сменными фильтрующими элементами 3, электрический подогреватель 8, датчики давления, температуры и указателей уровня масла.

    Работа смазочной системы осуществляется следующим образом: после включения вспомогательного масляного насоса, масло под давлением начинает поступать из маслобака 1 в нагнетательные линии. Основной поток масла поступает к маслоохладителям 2, откуда после охлаждения оно подается к основным масляным фильтрам 3. Дифманометр, установленный на фильтрах, указывая на перепад давления до и после фильтров, характеризует степень их загрязнения. При достижении перепада давлений масла на уровне примерно 0,8 МПа, происходит переключение работы на резервный фильтр; фильтрующие элементы на работающем фильтре заменяются.


    Очищенное масло после фильтров поступает на регуляторы давления 5, которые обеспечивают подачу масла на подшипники и соединительные муфты "турбина-редуктор" и "турбина-нагнетатель" с необходимым давлением.

    Из подшипников масло по сливным трубопроводам поступает обратно в маслобак 1. Термосопротивления, установленные на сливных трубопроводах, позволяют контролировать температуру подшипников турбоагрегата и центробежного нагнетателя.

    Количество масла в баке контролируется при помощи специального уровнемера, соединенного с микровыключателем датчика минимального и максимального уровня. Сигналы датчика введены в предупредительную сигнализацию агрегатной автоматики. Контроль за уровнем масла в маслобаке осуществляется и визуально с помощью уровнемерной линейки, установленной на маслобаке.

    Система уплотнения центробежного нагнетателя: основные узлы и принцип работы.

    Работа системы уплотнения центробежного нагнетателя основана на использовании принципа гидравлического затвора, обеспечивающего поддержание постоянного давления масла, на 0,1 -0,3 МПа превышающего давление перекачиваемого газа.

    Масло к винтовым насосам уплотнения поступает из системы маслоснабжения ГПА. В систему уплотнения нагнетателя входит (рис. 1.22): регулятор перепада давления 3, обеспечивающий постоянный перепад давления масла над давлением перекачиваемого газа, аккумулятор 2, обеспечивающий подачу масла в уплотнения в случае прекращения его подачи от насосов (при исчезновении напряжения), поплавковые камеры 4, служащие для сбора масла, прошедшего через уплотнения и газоотделитель 5, предназначенный для отбора газа, растворенного в масле.



    Рис. 1.22. Система уплотнения центробежного нагнетателя: 1 - центробежный нагнетатель; 2 - аккумулятор; 3 - регулятор перепада давления; 4 - поплавковая камера; 5 - газоотделитель; 6 - масляное уплотнение (торцевое); 7 - маслопровод высокого давления; 8 -винтовые насосы.
    При работе ГПА масло высокого давления после насосов 8 по маслопроводу поступает на вход регулятора перепада давления 3. После регулятора 3 оно поступает в аккумулятор 2 и далее по двум маслопроводам 7 к уплотнениям 6 центробежного нагнетателя 1. После уплотнений масло сливается в поплавковые камеры 4, по мере заполнения которых оно перетекает в газоотделитель 5, где происходит выделение газа, растворенного в масле. Очищенное от газа масло возвращается в основной маслобак, а выделившийся из масла газ через свечу отводится в атмосферу.

    Одним из важнейших элементов системы уплотнений являются непосредственно масляные уплотнения. Различают в основном два типа уплотнений: щелевые и торцевые. О качестве работы системы уплотнений судят по интенсивности поступления масла в поплавковую камеру. Быстрое ее заполнение маслом при закрытом сливе свидетельствует о повышенном расходе масла через уплотнения.
    Системы охлаждения масла на КС: градирни и аппараты воздушного охлаждения (АВО масла).

    На компрессорных станциях используются два типа систем охлаждения масла: градирни и аппараты воздушного охлаждения (АВО масла).

    Градирни в настоящее время редко используются на КС, главным образом, из-за трудностей их эксплуатации в зимний период, когда начинается интенсивное их обледенение, приводящее к снижению поступления воздуха в градирню и, как следствие, повышению температуры масла. Кроме того, применение градирен вызывает необходимость хорошей водоподготовки, повышенный расход воды, а также значительные расходы на проведение профилактических ремонтов градирен.

    Очистка турбинного масла на КС: маслоочистительные машины (для самостоятельного изучения).

    На компрессорных станциях для очистки турбинного масла применяются маслоочистительные машины типов ПСМ-1-3000, CM-1-3000, НСМ-2, НСМ-3, CM-1,5, которые могут работать в зависимости от степени загрязнения масла как по схеме очистки, так и по схеме осветления регенерируемого масла. Принципиальная схема маслоочистительной машины типа ПСМ-1-3000 приведена на рис. 1.23. По этой схеме загрязненное масло, пройдя фильтр грубой очистки 8, шестеренчатым насосом 7 через электроподогреватель 5 подается в очистительный вращающийся барабан 9, где из масла происходит выделение механических примесей и воды. В нижней части барабана масло под действием центробежных сил поступает на разделительные тарелки 10. Вода, имеющая большую плотность, чем масло, центробежной силой отбрасывается на периферию и под действием непрерывно поступающего в барабан масла попадает в водяную полость маслосборника 3. Очищенное масло по кольцевому каналу сливается в вакуум-бак 4. Шестеренчатым насосом 7 масло из вакуум-бака подается на фильтр 1, откуда оно выходит уже полностью очищенным. При работе маслоочистительной машины механические примеси оседают на стенках барабана 9.



    Лекция №6
    Тема 1.7 Газоперекачивающие агрегаты (ГПА) на КС и их компоновка. Типы газоперекачивающих агрегатов, применяемых на КС.

    Назначение ГПА и его компоновка на КС. Основные узлы агрегата, их назначение и устройство.
    Газоперекачивающий агрегат - сложная энергетическая установка, предназначенная для компремирования природного газа, поступающего на КС по магистральному газопроводу.

    На рис. 2.25 приведена принципиальная схема ГПА с газотурбинным приводом, где показаны все основные узлы, входящие в агрегат:



    Рис. 3.25. Приниципиальная схема компоновки ГПА:

    - воздух до осевого компрессора; - воздух до рекуператора; - воздух после рекуператора; - выхлопные газы; - пусковой газ; - топливный газ; - импульсный газ; - технологический газ; - масло.

    1. Воздухозаборная камера (ВЗК) нужна для подготовки циклового воздуха, поступающего из атмосферы на вход осевого компрессора. На разных типах ГПА воздухозаборные камеры имеют различные конструкции, но все предназначены для очистки поступающего воздуха и понижения уровня шума в районе ВЗК.

    2. Пусковое устройство (турбодетандер, воздушный или электрический стартер) необходимо для первоначального раскручивания осевого компрессора (ОК) и турбины высокого давления (ТВД) в момент пуска ГПА.

    3. Осевой компрессор предназначен для подачи необходимого количества воздуха в камеру сгорания газотурбинной установки.

    4. Турбина высокого давления служит приводом осевого компрессора и находится с ним на одном валу.

    5. Турбина низкого давления (ТНД) служит для привода центробежного нагнетателя.

    6. Нагнетатель природного газа представляет собой центробежный газовый компрессор без наличия промежуточного охлаждения и предназначен для компремирования природного газа.

    7. Краны обвязки ГПА.

    8. Регенератор (воздухоподогреватель) представляет собой теплообменный аппарат для повышения температуры воздуха, поступающего после ОК в камеру сгорания (КС), и тем самым снижения расхода топливного газа по агрегату.

    9. Камера сгорания предназначена для сжигания топливного газа в потоке воздуха и получения продуктов сгорания с расчетными параметрами (давление, температура) на входе в ТВД.

    10. Блок подготовки пускового и топливного газа представляет собой комплекс устройств, при помощи которых часть газа, отбираемого из магистрального газопровода, очищается от механических примесей и влаги, доводится до необходимых параметров, обусловленных требованиями эксплуатации газоперекачивающих агрегатов.

    11. Аппараты воздушного охлаждения масла предназначены для охлаждения смазочного масла после подшипников турбин и нагнетателя.

    Кроме того, каждый ГПА снабжен системой регулирования основных параметров агрегата, системами агрегатной автоматики, автоматического пожаротушения, обнаружения загазованности помещения и др.

    Рассмотрим компоновку и общий вид газоперекачивающего агрегата на примере ГПА-Ц-16 (Рис. 1.15). Агрегат ГПА-Ц-16 предназначен для транспортирования природного газа по магистральным газопроводам при рабочем давлении 5,5 - 7,5 МПа.

    Газоперекачивающий агрегат полностью автоматизирован, устанавливается в индивидуальном контейнере и может эксплуатироваться при температуре окружающего воздуха от -55 до + 45 градусов Цельсия.



    Агрегат состоит из отдельных функционально завершенных блоков и сборочных единиц полной заводской готовности, стыкуемых между собой на месте эксплуатации (Рис. 1.16).
    В состав ГПА входят:

    • турбоблок с газотурбинным двигателем НК-16СТ и центробежным нагнетателем НЦ-16;

    • воздухоочистительное устройство (ВОУ);

    • шумоглушитель всасывающего тракта;

    • всасывающая камера;

    • промежуточный блок;

    • блок вентиляции;

    • два блока маслоохладителей;

    • выхлопной диффузор;

    • выхлопная шахта;

    • шумоглушители выхлопного тракта;

    • блок автоматики;

    • блок маслоагрегатов;

    • блок фильтров топливного газа;

    • система подогрева циклового воздуха;

    • система пожаротушения; система обогрева контейнера.

    Турбоблок включает в себя следующие сборочные единицы: контейнер; приводной двигатель НК-16СТ, установленный на подмоторной раме; выхлопную улитку; переходник; нагнетатель и муфту, передающую вращение от свободной турбины двигателя к нагнетателю. Кроме того, в турбоблоке размещены отдельные сборочные единицы маслосистемы, системы обогрева, автоматического пожаротушения, обогрева циклового воздуха и автоматического управления агрегатом.

    Контейнер при помощи герметичной перегородки разделен на два изолированных помещения: отсек двигателя и отсек нагнетателя. Отсеки представляют собой сварные каркасы из профильного проката с закрепленными на них панелями. В отсеках имеются двери и расположены кронштейны для крепления навесного оборудования.

    Для проведения ремонтных и регламентных работ в отсеке нагнетателя установлен ручной передвижной кран грузоподъемностью 5 тонн и ручная таль грузоподъемностью 1 тонна.

    Улитка предназначена для плавного торможения и поворота на 90° потока выхлопных газов приводного двигателя с последующим выбросом их через выхлопное устройство в атмосферу.


    Муфта предназначена для передачи крутящего момента от силовой турбины двигателя к нагнетателю. Состоит из четырех основных частей: упругой муфты со стороны ротора силовой турбины; промежуточного вала; зубчатой муфты со стороны ротора нагнетателя; кожуха муфты. Конструкция муфты позволяет компенсировать радиальные и осевые смещения, возникающие от тепловых расширений роторов и от неточности центровки при монтаже, а также гасить возможные резонансные колебания, возникающие в процессе работы агрегата.

    Воздухоочистительное устройство предназначено для очистки от пыли и других механических включений циклового воздуха, поступающего из атмосферы в компрессор двигателя. Воздухоочистительное устройство (ВОУ) рассчитано на совместную работу с системой подогрева циклового воздуха, работающей по принципу подмешивания горячих выхлопных газов к всасываемому атмосферному воздуху на входе ВОУ.

    ВОУ состоит из камеры, фильтрующих элементов, короба отсоса пыли, вентиляторов отсоса пыли, патрубков, настила, байпасных клапанов и решеток для подогрева циклового воздуха.

    Очистка воздуха производится в инерционно-жалюзийных сепараторах. Запыленный атмосферный воздух засасывается в фильтрующие элементы через прямоугольные окна в стенках камеры ВОУ. За счет резкого поворота потока в фильтрующих элементах происходит сепарационное разделение воздушного потока. Поток очищенного воздуха, изменив направление в вертикальных листах фильтрующих элементов, поступает через шумоглушители в осевой компрессор двигателя.

    На задней стенке камеры ВОУ размещены два байпасных клапана (БК) и герметично закрывающаяся дверь.

    Открываются клапаны автоматически при достижении разрежения в камере ВОУ 800 Па. При снижении разрежения до 500 Па клапаны закрываются.

    Камера всасывания служит для направления очищенного в ВОУ атмосферного воздуха к осевому компрессору двигателя. Всасывающая камера состоит из двух основных частей: камеры и рамы, собираемых при монтаже.

    Камера представляет собой цельносварной каркас, выполненный из профильного проката. В проемы каркаса камеры установлен шумоглушитель, представляющий собой специальные щиты, заполненные теплоизоляционными звукопоглощающими матами из супертонкого базальтового волокна. Внутренняя сторона щитов обшита перфорированным стальным листом.

    В центральных проемах задней и передней стенок установлены ворота, которые служат для закатки и выкатки двигателя при его замене.

    На внутренних воротах камеры закреплена лемниската, обеспечивающая направленный поток воздуха к двигателю.

    Рама представляет собой цельносварную конструкцию прямоугольной формы, на которую при монтаже устанавливается камера.

    Промежуточный блок предназначен для формирования равномерного потока воздуха непосредственно перед входным направляющим аппаратом осевого компрессора двигателя.

    Выхлопное устройство с шумоглушением служит для выброса выхлопных газов и снижения шума выхлопа двигателя.

    Устройство состоит из диффузора, проставки и шумоглушителя. Выхлопное устройство поддерживается опорой.

    Диффузор предназначен для плавного снижения скорости выхлопных газов и представляет собой цельносварную конструкцию, состоящую из каркаса, внутренние проемы которого заполнены звукопоглощающим материалом.

    Проставка представляет собой сварную конструкцию и служит для отбора выхлопных газов, идущих на обогрев всасывающего тракта.

    Блок маслоохладителей предназначен для охлаждения масла, циркулирующего в системах смазки и уплотнения агрегата.

    Блок маслоохладителей работает следующим образом: атмосферный воздух вентиляторами блока засасывается и продувается через теплообменные секции, отбирая тепло с поверхности оребрения труб, а затем поступает во внутрь контейнера и через жалюзи выбрасывается в атмосферу. Открытие жалюзи происходит за счет наличия избыточного давления (поддува) в объеме контейнера блока маслоохладителей, создаваемого вентиляторами. Поддержание требуемой температуры масла происходит автоматически при помощи регуляторов температуры и за счет включения по очереди вентиляторов.

    Блок вентиляции предназначен для размещения оборудования, обеспечивающего вентиляцию отсека двигателя и просос атмосферного воздуха через маслоохладители при отсутствии электроэнергии.

    В нормальном режиме работы блока вентиляции воздух из атмосферы засасывается осевыми вентиляторами, проходит через маслоохладители и через жалюзи в блоках вентиляции и маслоохладителей выбрасывается наружу. Жалюзи открыты под воздействием избыточного давления внутри блоков. Заслонки в этом случае закрыты и отсекают блок вентиляция от всасывающего тракта двигателя. Центробежный вентилятор забирает очищенный после ВОУ воздух из шумоглушителя и подает его в отсек двигателя.

    В аварийном режиме работы заслонки поворачиваются на 90° и блок вентиляции соединяется со всасывающим трактом двигателя. Воздух из атмосферы за счет разрежения, создаваемого двигателем в блоках вентиляции и маслоохладителей, просасывается через вентиляторные отверстия, через аппараты воздушного охлаждения масла и затем через открытые заслонки в блоке вентиляции поступает на вход в двигатель. Жалюзи в блоках маслоохладителей и вентиляции при этом закрыты.

    Блок маслоагрегатов предназначен для размещения маслоагрегатов и арматуры маслосистемы, что позволяет производить их обслуживание при работе ГПА.

    Блок автоматики служит для размещения приборных щитов и другого оборудования систем автоматического управления ГПА.

    Блок фильтров топливного газа предназначен для очистки газа от возможных загрязнений в трубопроводах между станционным блоком подготовки топливного и пускового газа и входа в камеру сгорания двигателя. В блоке установлено два фильтра, обвязка которых позволяет включать в работу фильтры поочередно или оба одновременно.

    Блок пожаротушения служит для размещения установки автоматического газового пожаротушения, вытяжного вентилятора, арматуры и других устройств. Подача огнегасящего вещества производится через штуцера в боковых стенках отсека.

    Автоматическая система пожаротушения обеспечивает противопожарную защиту отсеков двигателя и нагнетателя за счет своевременного обнаружения очага возгорания и последующего подавления его путем автоматической подачи огнегасящего вещества - хладона 114В2.

    Полный заряд хладона составляет 480 кг, при этом рабочий и резервный заряды - по 240 кг. Давление хладона в баллонах при температуре 25°С составляет 12,5 МПа.

    Для обнаружения пожара и выдачи команды в систему управления в отсеках двигателя и нагнетателя установлены соответствующие датчики.

    Система обогрева предназначена для разогрева агрегата в холодное время года перед пуском и для обеспечения нормальных климатических условий при работе приборов и оборудования, установленных в отсеках контейнера. Обогрев осуществляется горячим воздухом, отбираемым от работающего двигателя за компрессором высокого давления (температура 280°С).

    Система подогрева циклового воздуха предназначена для предотвращения обледенения всасывающего тракта двигателя в диапазоне температур атмосферного воздуха от +7 до -10 °С. Подогрев циклового воздуха осуществляется подачей на вход воздухоочистительного устройства горячих газов из выхлопной шахты агрегата.
    Классификация ГПА на КС по типу привода: газотурбинные ГПА, электроприводные агрегаты (ЭГПА) и газомотокомпрессорные установки (ГМК), их показатели.

    Газоперекачивающие агрегаты, применяемые для компремирования газа на компрессорных станциях, по типу привода подразделяются на три основных группы: газотурбинные установки (ГТУ), электроприводные агрегаты (ЭГПА) и газомотокомпрессорные установки (ГМК).

    К первой группе относятся ГПА с приводом от центробежного нагнетателя от газовой турбины; ко второй - агрегаты с приводом от электродвигателя и к третьей группе - агрегаты с приводом от поршневых двигателей внутреннего сгорания, использующих в качестве топлива природный газ.

    К агрегатам первой группы - основного вида привода компрессорных станций, относятся: стационарные, авиационные и судовые газотурбинные установки.

    К авиаприводным газотурбинным установкам относятся ГПА, приводом которых служит газовая турбина авиационного типа, специально реконструированная для использования на компрессорных станциях.

    В настоящее время на газопроводах эксплуатируются двигатели, выпускаемые Самарским моторостроительным объединением им. Фрунзе. Сборку агрегатов осуществляет Сумское машиностроительное научно-производственное объединение (г. Сумы, Украина).

    К агрегатам, выпускаемым этими объединениями, относятся: ГПА-Ц-6,3 с двигателем НК-12СТ и нагнетателями Н-196-1,45 и НЦВ-6,3/56-1,45; ГПА-Ц-6,3/76 с двигателем НК-12СТ и нагнетателем НЦВ-6,3/76-1,45 и ГПА-Ц-6,3/125 с двигателем НК-12СТ и нагнетателем НЦВ-6,3/125-2,2. КПД этих агрегатов составляет 24%. На газопроводах в общей сложности эксплуатируется 440 таких ГПА.

    Сумским машиностроительным научно-производственным

    объединением осуществляется сборка ГПА и на основе двигателей, выпускаемых Казанским моторостроительным объединением им.Фрунзе. К таким агрегатам относится ГПА-Ц-16 с двигателем НК-16СТ и нагнетателями Ц-16/56-1,44 и Ц-16/76-1,45. КПД агрегатов составляет 27%, мощность 16 МВт, степень сжатия по нагнетателю - 1,45. Общее число таких агрегатов составляет 536 шт.

    К авиаприводным агрегатам на КС относятся и установки импортного производства, типа "Кобера-182" с двигателем Эйвон 1534-1016 производства фирмы "Ролл-Ройс" (Великобритания) и нагнетателем 2ВВ-30. КПД установки составляет 27,3%, мощность 12,9 МВт. Общее число таких агрегатов на КС ОАО "Газпром" - 42 шт.

    К судовым газотурбинным агрегатам относятся ГПА, где в качестве привода используется модернизированная газовая турбина судового типа. К таким установкам относятся газовые турбины, выпускаемые Николаевским судостроительным заводом (Украина): ГПУ-10 "Волна" с двигателем ДР-59Л и нагнетателем 370-18-1, КПД установки - 26,5%.

    В последнее время Николаевский судостроительный завод начал выпуск новых агрегатов на базе использования двигателя ДГ-90. КПД установки составляет 34%. На газопроводах эксплуатируется 8 таких агрегатов.

    Структура парка ГПА в системе ОАО «Газпром». Газотурбинные ГПА: стационарные, авиационные и судовые.

    Структура парка ГПА в системе ОАО «Газпром» представлена в табл.3.8.

    Таблица 3.8- Структура парка ГПА в системе ОАО "Газпром"

    Вид привода

    Количество

    Мощность




    штук

    %

    млн.кВт

    %

    Газотурбинный привод

    2989

    74,2

    33,7

    85,5

    Электропривод

    746

    18,5

    5,3

    13,5

    Поршневой привод

    293

    7,3

    0,4

    1,0

    Всего

    4028

    100

    39,4

    100

    Показатели газотурбинных установок нового поколения характеризуются данными табл. 3.9.

    Таблица 3.9- Показатели перспективных газотурбинных установок нового поколения

    Марка ГПА

    Марка двигателя

    Тип двигателя

    Мощность, МВт

    КПД

    Температ. перед турбиной, °С

    Степень сжатия в цикле

    ГПА-2,5

    ГТГ-2,5

    Судовой

    2,5

    0,27

    939

    13,0

    ГПУ-6

    ДТ-71

    Судовой

    6,3

    0,305

    1022

    13,4

    ГПА-Ц-6,3А

    Д-336

    Авиа

    6,3

    0,30

    1007

    15,9

    ГТН-6У

    ГТН-6У

    Промышл.

    6,3

    0,305

    920

    12,0

    ГПА-Ц-6,3Б

    НК-14СТ

    Авиа

    8,0

    0,30

    1047

    10,5

    ГПУ-10А

    ДН-70

    Судовой

    10,0

    0,35

    1120

    17,0

    ГПА-12 "Урал"

    ПС-90

    Авиа

    12,0

    0,34

    1080

    15,8

    ГПА-Ц-16С

    ДГ-90

    Судовой

    16,0

    0,34

    1065

    18,8

    ГПА-Ц-16Л

    АЛ-31СТ

    Авиа

    16,0

    0,337

    1167

    18,1

    ГПА-Ц-16А

    НК-38СТ

    Авиа

    16,0

    0,368

    1183

    25,9

    ГТНР-16

    -

    Промышл.

    16,0

    0,33

    940

    7,0

    ГТН-25-1

    -

    Промышл.

    25,0

    0,31

    1090

    13,0

    ГПА-Ц-25

    НК-36СТ

    Авиа

    25,0

    0,345

    1147

    23,1

    ГПУ-25

    ДН-80

    Судовой

    25,0

    0,35

    1220

    21,8

    ГПА нового поколения призваны обеспечить высокий уровень основных эксплуатационных показателей, включая высокую экономичность (КПД на уровне 31-36 % в зависимости от мощности агрегата), высокую надежность: наработка на отказ не менее 3,5 тыс.ч, межремонтный ресурс на уровне 20-25 тыс. ч, улучшенные экологические показатели и т.п.

    Характеристики ряда типов центробежных нагнетателей, используемых на газопроводах, приведены в табл. 3.9.

    Каждый тип нагнетателя характеризуется своей характеристикой, которая строится при его натурных испытаниях.

    Таблица 3.9 - Характеристики центробежных нагнетателей для транспорта природных газов

    Тип нагнетателя

    Объемная коммерч. производ.

    млн.м³/сут

    Номинал. частота вращения, об/мин

    Объемная производ., м/мин

    Степень сжатия

    Конечное давление на выходе, МПа

    370-14-1

    19,1

    5300

    289

    1,25

    5,66

    Н-300-1,23

    20,0

    6150

    260

    1,24

    5,50

    Н-196-1,45

    10,7

    8200

    196

    1,45

    5,60

    520-12-1

    29,3

    4800

    425

    1,27

    5,60

    370-18-1

    36,0

    4800

    370

    1,23

    7,60

    Н-16-56

    51,0

    4600

    800

    1,24

    5,60

    Н-16-75

    51,0

    4600

    600

    1,24

    7,50

    Н-16-76

    31,0

    6500

    380

    1,44

    7,50

    650-21-1

    53,0

    3700

    640

    1,45

    7,60

    820-21-1

    53,0

    3700

    820

    1,45

    5,60

    Купер-Бессемер:

    280-30

    16,5

    6200

    290

    1,51

    5,60

    СДР-224

    17,2

    6200

    219

    1,51

    7,50

    2ВВ-30

    21,8

    5000

    274

    1,51

    7,50

    Нуово-Пиньони:

    PCL- 802/24

    17,2

    6500

    219

    1,49

    7,52

    PC-L1001-40

    45,0

    4600

    520

    1,51

    7,52



    Общестанционные системы КС (демонстрация учебного видеофильма).

    Лекция №7
    1   2   3   4   5   6   7


    написать администратору сайта