Лекции по биологии (1 семестр). Лекция 1 Типы клеточной организации
Скачать 1.41 Mb.
|
ЛЕКЦИЯ 1 Типы клеточной организации. 1. Клетка – элементарная генетическая и структурно-функциональная биологическая система. Клетка является элементарной, т.е. наименьшей, самостоятельной единицей строения, функционирования и развития всех живых организмов. Все живые организмы состоят из клеток (исключение составляют вирусы). Клетка является генетической единицей, так как имеет ядро, содержащее ДНК, в которой записана информация о строении и функциях клетки. При делении клетки эта информация наследуется дочерними клетками. Клетка является структурно-функциональная биологическая система: живая клетка включает в себя подсистемы – органеллы, органеллы выполняют определенные функции и в тоже время они все вместе обеспечивают жизнедеятельность клетки. 2. Клеточная теория. Современное состояние клеточной теории. Началом изучения клетки можно считать 1665г., когда Р. Гук увидел в микроскоп на тонком срезе пробки мелкие ячейки, названные им клетками. В 30-е годы XIX века Р. Броун открыл ядро, что создало основу для сопоставления всех клеток. В 1839г. Т. Шванн и М. Шлейден обобщили накопленный материал и сформулировали основное положение: все растительные и животные организм состоят из клеток, сходных по строению. В 1858г. Р. Вирхов внёс очень важное дополнение в клеточную теорию – он доказал, что количество клеток увеличивается только одним способом – в результате деления. Таким образом, клетка происходит только от клетки. Благодаря применению физических и химических методов исследования и новейших приборов, основные положения клеточной теории были развиты и углублены. Современная клеточная теория включает следующие положения: 1. клетка – основная единица строения и развития всех живых организмов, наименьшая единица живого; 2. клетки всех одноклеточных и многоклеточных организмов сходны (гомологичны) по своему строению, химическому составу, основным проявлениям жизнедеятельности и обмену веществ; 3. клетки размножаются делением, и каждая новая клетка образуется в результате деления исходной (материнской) клетки; 4. клетки многоклеточных организмов специализированы по выполняемым ими функциям и образуют ткани; 5. ткани образуют органы, которые тесно взаимосвязаны и подчинены нервным и гуморальным системам регуляции. Вывод. Клетка – живая элементарная открытая система, являющаяся основной структурно-функциональной единицей всех живых организмов, способная к самообновлению, саморегуляции и самовоспроизведению. 3. Клетка как открытая система. Организация потоков вещества, энергии и информации в клетке. Клетка является открытой системой. Это значит, что в неё из внешней среды (если это организм человека, то из ЖКТ) поступают расщеплённые до мономеров питательные вещества, с заключенной в них энергией. Эти вещества используются в процессе жизнедеятельности клетки, а образующиеся при этом продукты метаболизма удаляются из него. Поток вещества: человек съел яйцо → в ЖКТ оно переварилось → аминокислоты всосались в кровь и поступили в клетку → из них синтезируются видоспецифические белки, который обеспечивает жизнедеятельность клетки, → в процессе жизнедеятельности клетки белки изнашиваются, стареют, разрушаются → конечные продукты обмена белка (аммиак и вода) выводятся из клетки. Поток энергии тесно связан с потоком вещества. Организм поглощает пищу (питание необходимо для обеспечения организма энергией и строительными материалами для репарационных и просто строительных целей) → часть пищи преобразуется в митохондриях в АТФ, а часть запасается в виде моносахаридов в печени, остальные углеводы разлагаются до Н2О и СО2. Поток информации в клетке – в клетке постоянно происходит синтез белка. Информация о структуре белка записана в ДНК. В процессе транскрипции она переносится на и-РНК, а в процессе трансляции на полипептид. Кроме ДНК и иРНК в реализации наследственной информации в клетке участвуют тРНК, рибосомы, ферменты активации аминокислот, АТФ. 4. Типы клеточной организации. Все организмы, имеющие клеточное строение, делятся на две группы: прокариоты (про – до, карион – ядро), или предъядерные.
Клетки прокариот (эубактерии и цианобактерии) имеют более простое строение: 1. нет организованного ядра, т.е. ядерное вещество не отделено от цитоплазмы собственной мембраной. Ядерное вещество представлено единственной хромосомой, состоящей из 1 молекулы ДНК, замкнутой в кольцо; 2. из органоидов присутствуют только многочисленные, но мелкие рибосомы; 3. функцию митохондрий у прокариот выполняют ферменты, лежащие непосредственно на плазматической мембране и образующие дыхательную цепь; 4. нет клеточного центра, следовательно, нет митоза (делятся амитозом); 5. не характерен циклоз (постоянное круговое движение цитоплазмы с органоидами), в то время как отсутствие циклоза для эукариот означает гибель клетки; 6. отсутствуют внутренние мембраны, делящие клетку на отсеки, в которых протекают противоположные процессы. При всей простоте строения прокариоты – типичные клетки, способные вести независимое существование. 5. Организация эукариотической животной клетки.
6. Строение и функции оболочки животной эукариотической клетки. Эукариотическая клетка отделена от внешней среды или соседних клеток плазматической мембраной, или плазмалеммой. Среди многочисленных моделей мембран, наиболее универсальной оказалась так называемая "жидкостно-мозаичная" модель. Согласно ей основой мембраны является жидкостный билипидный слой, образованный строго ориентированными фосфолипидными молекулами. Двойной слой фосфолипидных молекул обращен друг к другу гидрофобными участками, а внешняя и внутренняя поверхности билипидного слоя образованы гидрофильными участками молекул. Белки, входящие в мембрану, не составляют сплошного слоя на внутренней и внешней поверхности билипидного слоя; они расположены мозаично и обладают способностью к перемещению в билипидном слое. Мембранные белки представлены тремя разновидностями:
Из этой модели организации мембраны вытекает важное следствие, а именно: возможность горизонтального и отчасти вертикального смещения погружённых и полупогружённых белковых молекул, то есть подвижность такой системы. Пронизывающие белки участвуют в транспорте веществ. Полупогружённые белки, обращённые внутрь, выполняют регуляторные ф-и. Полупогружённые белки, обращённые наружу, «узнают» поверхность соседних клеток; благодаря им формируются ткани и органы. На плазмалемме животных клеток находится гликокаликс – соединение белков и полисахаридов. Он непосредственно связывает клетку с внешней средой и служит для распознавания сигналов, поступающих из неё. Он же связывает клетки в ткани. Образуется гликокаликс благодаря жизнедеятельности самих клеток. Функции плазматической мембраны:
7. Трансмембранный транспорт веществ в клетке. Существует 5 способов поступления веществ в клетку: диффузия, облегчённая диффузия (пассивный транспорт), осмос, активный транспорт, эндоцитоз. Два последних способа сопровождаются затратами энергии. Диффузия – перемещение вещества из области большей концентрации в область меньшей концентрации без затраты энергии. Движущей силой диффузии является градиент (разность) концентрации. Диффузия будет действовать до тех пор, пока концентрация вещества в двух областях не выровняется. Так перемещаются кислород, углекислый газ, глюкоза, аминокислоты, жирные кислоты, этанол, мочевина. Облегчённая диффузия или пассивный транспорт. В этом случае молекула специального белка-переносчика соединяется с переносимой молекулой на одной стороне мембраны и «перетягивает» её на другую сторону мембраны. Перенос веществ в этом случае осуществляется также по градиенту концентрации и без затраты энергии. Так перемещаются сахара, аминокислоты, нуклеотиды и ионы. Осмос – перемещение молекул воды через полупроницаемую мембрану, вызванное разностью концентрации. Клетка, помещённая в чистую воду, насасывает её по градиенту своей концентрации. Клетка, помещённая в насыщенный раствор, отдаёт воду и сморщивается. Например, эритроциты в гипотоническом растворе набухают и лопаются, а в гипертоническом – сморщиваются. Активный транспорт – перемещение веществ против их градиентов концентрации, т.е. из области меньшей концентрации в область большей концентрации. На это требуется энергия, источником её служит АТФ. Этот способ характерен только для ионов питательных веществ, следовательно, клетка обладает избирательной способностью по отношению к различным ионам. Эндоцитоз – перемещение веществ с помощью выростов и выпячиваний плазмалеммы. Эндоцитоз делится на фагоцитоз и пиноцитоз. Оба этих процесса требуют затраты энергии. Фагоцитоз – захват выростами плазмалеммы крупных частиц, диаметром 1мм и более и втягивание их в цитоплазму клетки. Здесь происходит их ферментативное расщепление. Клетки, осуществляющие фагоцитоз, называются фагоцитами (нейтрофилы и макрофаги). Пиноцитоз – поглощение пузырьков жидкости. В месте соприкосновения с пузырьком плазмалемма образует впячивание в виде канальца, который заполняется жидкостью. Затем он отшнуровывается и попадает в цитоплазму. Пиноцитоз характерен для лейкоцитов, клеток зародыша и печени. Путём пиноцитоза поглощаются крупные молекулы и ионы, не способные проникать через поры плазмалеммы. Из клетки во внешнюю среду вещества поступают с помощью экзоцитоза. Так из секреторных клеток, через их мембрану, выводятся пищеварительные ферменты или гормоны, а из пищеварительных вакуолей – непереваренные плотные частицы. 8. Цитоплазма: основное вещество, цитоскелет, органеллы. Основное вещество цитоплазмы представлено гиалоплазмой. Это коллоидный раствор неорганических и органических веществ, особенно много в гиалоплазме белков. Функции гиалоплазмы:
Цитоскелет клетки представлен микротрубочками и микрофиламентами. Каждая микротрубочка представляет собой полый цилиндр диаметром 20-30нм, образованный белком тубулином. Микротрубочи играют роль цитоскелета, т.к. пронизывают всю цитоплазму клетки. Кроме того, микротрубочки участвуют в создании клеточного центра и в транспорте веществ внутри клетки. Микрофиламенты – это белковые нити толщиной около 4нм. Большинство из них образовано молекулами актинов, которых выявлено около 10 видов. Они могут группироваться в пучки, образующие опорные структуры цитоскелета. Микротрубочки – трубчатые образования белковой природы различной длины с внешним диаметром 24 нм. Микротрубочки встречаются в свободном состоянии в цитоплазме клеток или как структурные элементы жгутиков, ресничек, митотического веретена, центриолей. Органеллы животной клетки: ЭПС, аппарат Гольджи, лизосомы, митохондрии, пластиды, рибосомы, клеточный центр. Органоиды клетки делятся на органоиды общего назначения и специального назначения. Органоиды специального назначения встречаются только в специализированных клетках и обеспечивают выполнение этими клетками специфических функций. К ним относятся миофибриллы мышечной клетки, ресничный эпителий дыхательных путей, ворсинки тонкого кишечника, жгутик сперматозоида. Органоиды общего назначения присущи всем клеткам. К ним относятся эндоплазматическая сеть, лизосомы, митохондрии, рибосомы, комплекс Гольджи, клеточный центр, микротрубочки и микрофиламенты, а также пластиды (последние только у растений). Эндоплазматическая сеть представлена сетью каналов и уплощённых цистерн, ограниченных одинарной мембраной. Она разветвляется по всему объёму цитоплазмы, что позволяет ей выполнять следующие функции:
ЭПС подразделяется на два типа: шероховатую и гладкую. Шероховатая имеет на наружной поверхности многочисленные рибосомы, на которых синтезируется белок. Гладкая сеть состоит из каналов и цистерн меньшего сечения, чем в шероховатой ЭПС. Она выполняет следующие функции:
Лизосома. Это пузырёк диаметром 0,2 - 0,5 мкм, покрытый однослойной мембраной. Эта мембрана предохраняет структуры и вещества клетки от разрушающих действий ферментов лизосом. При нарушений её целостности ферменты выходят в цитоплазму клетки, и происходит автолиз – самопереваривание клетки. Ферменты лизосом способны расщеплять белки, нуклеиновые кислоты, полисахариды и липиды. Функции лизосом: 1. осуществляют внутриклеточное пищеварение; лизосомы – миниатюрная пищеварительная система клетки; 2. удаляют отжившие органоиды клетки или личиночные органы. Так, хвост у головастика лягушек рассасывается под действием фермента лизосом – катепсина; 3. превращают вредные для клетки вещества в перевариваемые продукты; 4. участвуют в защите клетки то бактерий и вирусов (вирусы замуровываются в лизосоме). Образуются лизосомы в комплексе Гольджи: сюда поступают синтезированные на рибосомах ферменты, здесь они окружаются мембраной и выводятся в цитоплазму. Это первичные (неактивные) лизосомы. Вторичные (активные) лизосомы образуются из первичных. Они подразделяются на фаголизосомы и аутолизосомы. Фаголизосомы переваривают материал, поступающий в клетку извне. Аутолизосомы разрушают собственные, изношенные структуры клетки. Вторичные лизосомы, в которых процесс переваривания завершён, называются остаточными тельцами. В них отсутствуют ферменты, и содержится непереваренный материал. Митохондрия (1-5 мкм) – двумембранный органоид, выполняющий функцию внутриклеточной энергетической станции. Это округлые образования, ограниченные двумя мембранами – наружной и внутренней. Наружная мембрана гладкая, она регулирует как поступление веществ в митохондрию, так и выведение их. Внутренняя мембрана образует складки – кристы, обращённые внутрь митохондрии. Внутри митохондрии находится так называемый матрикс, содержащий различные ферменты, ионы Са2+ и Мg2+, а также ДНК, т-РНК, и-РНК и рибосомы (причём ДНК и рибосомы у митохондрий похожи на таковые бактерий). Благодаря наличию собственной ДНК (1 молекула кольцевой формы), митохондрии могут размножаться независимо от деления клетки. Происходит это путём перешнуровки исходной митохондрии. Предварительно у них удваивается количество ДНК. Благодаря содержанию т-РНК, и-РНК и рибосом, митохондрии они могут синтезировать собственный белок. Кроме того, митохондрии играют определённую роль в передаче признаков по наследству (цитоплазматическая наследственность). На кристах митохондрии происходят окислительно-восстановительные процессы, сопровождающиеся выделением энергии. Она используется на образование фосфатных связей в АТФ. Накопление АТФ делает митохондрии своеобразными аккумуляторами энергии клетки, которая расходуется на процессы жизнедеятельности клетки по мере надобности. Из-за интенсивной работы митохондрии имеют малую продолжительность жизни, например митохондрии клеток печени живут всего 10 дней. Аппарат Гольджи представляет собой систему диктиосом числом от нескольких десятков до нескольких сотен и даже тысяч на клетку. Каждая диктиосома образована стопкой из 3-12 крупных цистерн, похожих на блюдца. От цистерн отходят во все стороны трубочки и пузырьки, имеющие мембранное строение. Трубочки соединяют отдельные цистерны соседних стопок, так образуется их единая сеть. Пузырьки участвуют в образовании первичных лизосом. В разных типах клеток аппарат Гольджи занимает строго определённое положение, вблизи ядра. Функции аппарата Гольджи разнообразны: 1. образование первичных лизосом, которые поступают затем в цитоплазму; 2. упаковка белков, поступающих из ЭПС, для последующего экспорта из клетки; 3. синтез структурных компонентов клетки, например, коллагеновых нитей; 4. синтез жиров и полисахаридов, входящих в состав мембран клетки; Рибосома (0,02-0,03 мкм) – не мембранный органоид, осуществляющий биосинтез белка. Рибосома состоит из двух неравных субъединиц – большой и малой. Обе субъединицы образуются в ядрышках, но объединяются они в рибосому только в момент присоединения к и-РНК. Этот процесс происходит с помощью ионов Мg2+. В каждой клетке содержится от десятков тысяч до миллионов рибосом. Часть их находится в свободном состоянии, но большинство рибосом прикреплено к мембранам ЭПС. Первые синтезируют белки, используемые для нужд клетки, вторые синтезируют белки "на экспорт". Они по каналам ЭПС поступают в комплекс Гольджи, пакуются в мембраны, а затем выводятся из клетки. Скорость работы рибосом поразительна – одна белковая молекула средних размеров синтезируется за одну минуту. Это позволяет непрерывно обновлять белки организма, изнашивающиеся в процессе его жизнедеятельности. Так, белки печени человека обновляются за 7 суток. Клеточный центр – не мембранный органоид, в котором из белка тубулина образуются микротрубочки. Клеточный центр состоит из двух центриолей, расположенных перпендикулярно друг к другу. Каждая центриоль – это цистерна, состоящая из 9 строенных микротрубочек. Микротрубочки соединены между собой системой связок, а снаружи одеты белковым чехлом. Перед делением клетки центриоли удваиваются. Во время митоза центриоли определяют местоположения полюсов веретена деления. Причём положение центриолей в делящейся клетке определяет центры новых клеток. Здесь будет располагаться ядро, т.к. клеточный центр всегда располагается вблизи ядра. 9. Включения Это непостоянный компонент цитоплазмы. Наличие их и количество зависит от интенсивности обмена веществ и состояния организма. Они делятся на три группы: 1. запасной питательный материал (гликоген, жир, крахмал); 2. вещества, подлежащие выведению из клетки (ферменты, гормоны); 3. балластные вещества (пигменты, соли щавелевой кислоты). Они более характерны для растительных клеток, т.к. у растений нет систем, аналогичной выделительной системе животных. ЛЕКЦИЯ 2 |