Лекции по биологии (1 семестр). Лекция 1 Типы клеточной организации
Скачать 1.41 Mb.
|
контролируемых генами Х- и У-хромосом человека.
Менделевский закон независимого наследования применим лишь к тем случаям, когда гены, определяющие исследуемые признаки, лежат в разных хромосомах. Гораздо чаще мы сталкиваемся с явлением наследования нескольких признаков, гены которых лежат в одной и той же хромосоме. У человека 23 пары хромосом, а генов более 20.000, следовательно, в одной и той же хромосоме находятся сотни генов. Гены, лежащие в одной хромосоме, образуют группу сцепления. Число групп сцепления равно числу хромосом в гаплоидном наборе. Хромосомы человека образуют 23 группы сцепления у женщин и 24 группы у мужчин (Y-хромосома образует отдельную группу сцепления). При мейозе гены данной группы сцепления попадают в одну гамету. Значит, наследоваться они будут одним организмом. Сцепленное наследование изучал Т. Морган и его сотрудники. Т. Морган работал с дрозофилами – плодовыми мушками, которые быстро размножаются и неприхотливы к условиям содержания. Скрещивались гомозиготные мухи с серым телом (А) и длинными крыльями (В), с мухами, имеющими чёрное тело (а) и короткие крылья (в) Р ААВВ х аавв Г F1 АаВв Все гибриды первого поколения имели серое тело и длинные крылья. Однако при скрещивании гибридов первого поколения Т. Морган не наблюдал явления независимого наследования признаков, т.е. у него не получалось расщепления в отношении 9 : 3 : 3 : 1 (как в опытах Г. Менделя). Для того, чтобы узнать, какие гаметы образуют гибриды первого поколения Т. Морган провёл анализирующее скрещивание. Сначала он скрестил гетерозиготного самца и гомозиготную рецессивную самку. В потомстве ожидалось получить мух серых длиннокрылых, серых короткокрылых, чёрных длиннокрылых и чёрных короткокрылых, каждых по 25%. Р АаВв x аавв Г F1 АаВв, Аавв, ааВв, аавв 25% 25% 2 5% 25% Такое расщепление должно получиться согласно законам Г.Менделя. Однако при анализе гибридов Т.Морган обнаружил серых мух с длинными крыльями (50%) и чёрных мух с короткими крыльями (50%). Для объяснения этого явления Т. Морган предположил, что гены, контролирующие серую окраску и длинные крылья, лежат в одной и той же хромосоме. Аллельные им гены, контролирующие чёрное тело и короткие крылья, лежат в гомологичной хромосоме. Поэтому аллели (А) и (В) попадают в одну гамету, а аллели (а) и (в) в другую гамету, т.е. образуется 2 типа гамет, а не 4 как при независимом наследовании. Тогда и потомков во втором поколении будет 2 типа, а не 4. Следовательно, гены (А) и (В), а также (а) и (в) наследуются совместно, или сцеплено. Так как потомки, сочетающие признаки обоих родителей (серое тело, короткие крылья или чёрное тело, длинные крылья) отсутствуют, такое сцепление называется полным сцеплением.
Когда Т. Морган скрестил гетерозиготную самку и гомозиготного рецессивного самца, в их потомстве наблюдалось расщепление. В процентном выражении это выглядело так: 41,5% серых длиннокрылых мух; 41,5% чёрных короткокрылых мух; 8,5% серых короткокрылых мух; 8,5% чёрных длиннокрылых мух. Р АаВв х аавв Г F1 АаВв, Аавв, ааВв, аавв с.д. с.к. ч.д. ч.к. 41,5% 8,5% 8,5% 41,5% Итак, Т. Морган не мог сказать, что расщепление идет по Г. Менделю (тогда бы доля каждого фенотипа равнялась 25%), но не наблюдалось и полного сцепления (тогда бы было всего два фенотипа, по 50% каждого). Числовые соотношения при этом скрещивании ближе к сцепленному наследованию. Поэтому такое наследование Т. Морган назвал неполным сцеплением. Причину неполного сцепления Т. Морган объяснил явлением кроссинговера, а особи, сочетающие признаки обоих родителей (серое тело, короткие крылья и чёрное тело, длинные крылья) назвал кроссоверными. Таких мух было 17%. Кроссинговер сопровождает образование любой гаметы, но при образовании разных гамет он происходит в разных участках данной пары хромосом. На участке, расположенном между генами (А) и (В), кроссинговер происходит при образовании 17% гамет, поэтому и кроссоверных особей 17%. На основании своих работ Т. Морган сформулировал закон: "Сила сцепления генов обратнопропорциональна расстоянию между ними". Из закона следует, что величина кроссинговера зависит от силы сцепления генов: чем сила сцепления генов больше, тем меньше величина кроссинговера. В настоящее время в генетике используется единица измерения расстояния между генами в хромосоме – морганида. Одна морганида равна 1% кроссоверных особей. Наличие в потомстве 50% и более кроссоверных особей говорит о независимом (менделевском) наследовании признака. Примечание Кроссоверные особи не появлялись в потомстве гетерозиготных самцов дрозофилы, т.к. при сперматогенезе у них не происходит кроссинговер.
Изучение наследования сочетаний других признаков показало, что процент кроссоверного потомства для каждой пары признаков всегда один и тот же, но он различается для разных пар признаков. Это наблюдение стало основанием для заключения, что гены в хромосомах расположены в линейном порядке. Генетические карты Они строятся с учётом процента кроссоверных потомков. Чем ближе расположены два гена в хромосоме, тем меньше вероятность кроссинговера между ними, и, следовательно, меньше процента кроссоверных потомков. Больший процент рекомбинантных потомков в анализирующем скрещивании говорит о том, что гены расположены в хромосоме дальше друг от друга. Поэтому, определяя процент кроссоверных по различным признакам потомков, можно построить генетическую карту хромосомы. За единицу расстояния и между генами принимается 1% кроссоверных особей, или 1 Сантиморганида. Примечание Если расстояние между генами больше 50 Сантиморганид, то говорят о независимом наследовании данного признака. Генетические карты человека могут оказаться очень полезными в развитии медицины и здравоохранения. Уже в настоящее время знание о локализации гена на определённой хромосоме используется при диагностике ряда тяжёлых наследственных заболеваний человека. В будущем появится возможность для генной терапии, т. е. исправления структуры или функции гена. Цитологические карты хромосом Они показывают расположение генов в хромосоме как в цитологической структуре. При этом учитываются все гены, а не только гены, контролирующие признаки организма. Цитологические карты составляются на основе дифференциальной окраски хромосом.
Диплоидный набор соматических клеток человека представлен 46 хромосомами или 23 парами хромосом. Из 46 хромосом 44 хромосомы (22 пары) одинаковы у мужского и женского организмов. Это аутосомы (обозначаются буквой А). Одна пара хромосом разная. Это половые хромосомы. У мужчин они представлены одной палочковидной хромосомой и одной хромосомой в виде крючка, напоминающего букву Y. Так эту хромосому и назвали, а вторую назвали Х-хромосомой. У женщин обе половые хромосомы палочковидные, т.е. Х-хромосомы. Тогда хромосомный набор соматических клеток можно представить так: 44 А + XX – клетки женского организма; 44 А + ХY – клетки мужского организма; Хромосомный набор половых клеток выглядит так: 22 А + Х ; 22 А + Х – женские гаметы; 22 А + Х; 22 А +Y – мужские гаметы. Следовательно, мужской пол продуцирует гаметы, отличающиеся по содержанию половых хромосом. Это гетерогаметный пол, женский пол – гомогаметный, т.к. продуцирует гаметы, содержащие одинаковые половые хромосомы. Схема генетического определения пола человека (тип ХY). При этом типе наследования пола самец имеет одну Х-хромосому и одну Y- хромосому, а самка – две Х-хромосомы. Р ХХ х ХY Р 44 + ХХ х 44+ ХY Г F1 ХХ, ХХ, ХY, ХY F1 44+ХХ, 44+ХХ, 44+ХY, 44+ХY ж ж м м ж ж м м Генетический пол ребенка определяется в момент оплодотворения и зависит от содержания в сперматозоиде хромосомы X или У. Таким образом, пол потомка определяет гетерогаметный родитель. Так как Х-сперматозоидов и Y-сперматозоидов образуется одинаковое количество, то теоретически соотношение полов = 1:1. Кроме рассмотренного типа наследования пола, существуют другие и типы. Тип ХО, или тип (кузнечик, клопы). При этом типе наследования пола самец имеет одну Х-хромосому, а самка – две Х-хромосомы. Р О – отсутствие половых хромосом, но не аутосом ХХ х ХО Г F1 ХХ , ХХ, ХО, ХО соотношение полов = 1:1, определяет пол потомков самец. Тип Z W – самка гетерогаметна, а самец – гомогаметен (птицы, бабочки). Р Z W х ZZ Г F1 ZZ, ZW, ZZ, ZW соотношение полов = 1:1, определяет пол потомка самка. Тип ♀ 2 n, ♂ 1 n, половые хромосомы отсутствуют (пчёлы, муравьи) Этот тип наследования пола связан с явлением партеногенеза. Вывод: у всех организмов, кроме размножающихся партеногенезом, наследование пола идет по менделевским закономерностям. Переопределение пола. Пол будущего организма определяется в момент оплодотворения, но формирование конкретного фенотипа во многом зависит от внешней среды. В природе и в эксперименте возможно переопределение пола. В морях у червя Bonellia личинки не дифференцированы по полу. Если личинки свободно плавают в воде, то превращаются в самок. Если личинки прикреплены к хоботку самки, то превращаются в самцов. В тихом океане обитают рыбки Labroides, живущие стайками из самок и одного самца. Каждый из членов такой семьи, кроме самца, постоянно находится в состоянии стресса, источником которого является самец. При этом уровень напряженности различается от самки к самке, так что можно выделить α- самок, β- самок и γ-самок и т.д. Гибель самца вызывает превращение α-самки (главной самки, сбрасывающей напряжение) в самца с полноценными семенниками. Описанное переопределение зависит от уровня гормонов в организме, выделяемых клетками надпочечников. У крокодилов в зависимости от температуры инкубации яиц могут появляться или самцы или самки. При температуре инкубации 28-290 С вылупляются самцы; при температуре инкубации 31-330 С вылупляются самки. Из примеров, рассмотренных выше, следует, что генотип особи заключает в себе информацию о возможности формирования признаков того или иного пола, которая реализуется лишь при определенных условиях индивидуального развития. Изменение этих условий может стать причиной переопределения признаков пола. При этом у организмов разных видов относительное значение генетических и средовых факторов не одинаково: у одних видов определяющим фактором является среда, у других – наследственная программа.
Х 1 2 3 Y В половых хромосомах имеются гомологичные и негомологичные участки: 1. участок Х-хромосомы, не имеющий гомолога в Y-хромосоме. 2. гомологичный участок Х и Y-хромосом; 3. участок Y-хромосомы, не имеющий гомолога в Х-хромосоме. Наследование признаков, контролируемых генами Х- и У-хромосом человека называется наследованием, сцепленным с полом. В половых хромосомах находятся гены, которые отвечают за развитие как нормальных, так и патологических признаков. Выделяют 3 типа наследования признаков сцепленных с полом. 1) тип Х. Признаки, наследующиеся по этому типу, контролируются генами, которые лежат в участке Х-хромосомы, не имеющий гомолога в Y-хромосоме (гемофилия, дальтонизм, отсутствие потовых желез). 2) тип У (голандрический). Признаки, наследующиеся по этому типу, контролируются генами, которые лежат в У-хромосоме. Признак передается строго от отца к сыну (некоторые заболевания почек, волосатость ушной раковины – гипертрихоз, развитие половых желёз по мужскому типу). 3) тип ХУ. Признаки, наследующиеся по этому типу, контролируются генами, которые лежат в гомологичных участках Х и Y-хромосом. Например, волчья пасть, заячья губа. Пример: наследование гемофилии. Это рецессивный признак, сцепленный с полом (с Х-хромосомой). Если женщина здорова, но в одной из Х-хромосом имеет ген гемофилии, она называется носительницей (ХН Хh). Она выходит замуж за здорового мужчину, но их дети (мальчики) могут быть больными. Р Х H Xh x XH Y Г F1 XH XH , XH Xh , XH Y , XhY Вероятность рождения в этом браке больных детей 25%, но в случае рождения мальчика вероятность повышается до 50%.
Закономерности наследственности, открытые Г.Менделем, углубленные Т.Морганом и другими учёными, известны под общим названием: "хромосомная теория наследственности". Это учение о локализации генов в хромосомах, утверждающее, что преемственность свойств организмов в ряду поколений определяется преемственностью их хромосом. Общие положения хромосомной теории наследственности: 1. гены находятся в хромосомах. Каждая пара хромосом есть группа сцепления генов. Число групп сцепления равно гаплоидному числу хромосом. 2. каждый ген в хромосоме занимает определённый участок. Гены в хромосомах расположены линейно. 3. между гомологичными хромосомами может происходить кроссинговер и обмен аллельными генами. 4. частота кроссинговера пропорциональна расстоянию между генами. Чем дальше гены расположены друг от друга, тем кроссинговер между ними происходит чаще. Хромосомная теория наследственности была подтверждена при изучении генетических механизмов определения пола у животных и при изучении сцепленного наследования. ЛЕКЦИЯ 7 Генотип и фенотип. Взаимодействие аллельных и неаллельных генов в детерминации признаков.
Учение о генотипе и фенотипе создал в 1911 году голландский ученый Вильгельм Иогансон. Совокупность генов клетки или организма, обуславливающих его развитие, называется генотипом. Генотип не механический набор независимо функционирующих генов, а единая система взаимодействующих генов. Совокупность признаков и свойств организма, формирующихся в процессе взаимодействия генотипа с внешней средой, называется фенотипом. Пределы, в которых в зависимости от условий среды, меняются фенотипические проявления генотипа – норма реакции. Другими словами фенотип – это результат взаимодействия генотипа и окружающей среды. Гены взаимодействуют на 2х уровнях: - на уровне генов - на уровне продуктов их функциональной активности, т.е. на уровне белков. В качестве примера взаимодействия генов на уровне продуктов их функциональной активности рассмотрим синдром Морриса. При этом заболевании у больного мужской кариотип, но вторичные половые признаки совершенно не выражены и фенотип типично женский. У больного тестостерон (мужской половой гормон) синтезируется в достаточном количестве, но белок-рецептор, воспринимающий тестостерон, отсутствует. Два признака (синтез тестостерона и синтез белка-рецептора к нему) контролируются разными генами. Но взаимодействие в этом случае происходит не уровне самих генов, а на уровне продуктов их функциональной активности (т.е. на уровне белков). У больного синдромом Морриса взаимодействие невозможно, т.к. белок-рецептор отсутствует (произошла мутация в соответствующем гене). Теперь клетки организма перестают воспринимать тестостерон. Но у мужчин в надпочечниках (и немного в семенниках) вырабатывается женский половой гормон – эстроген. Поэтому у больного развивается женский фенотип.
Пара аллельных генов "А" и "а " возникает в результате мутации гена дикого типа: А → а. Это прямая (или рецессивная) мутация, но возможна и обратная (доминантная) мутация: а → А. Формы взаимодействия аллельных генов. Доминантность и рецессивность. Аллельный ген, который проявляется в признак, и его проявлению не мешает другой аллель данного гена – называется доминантным. Аллельный ген, который не проявляется в признак в присутствии доминантного называется – рецессивным. Неполное доминирование. Иногда у гетерозиготы признак занимает промежуточное положение между доминантным и рецессивным. В таком случае говорят о неполном доминировании или промежуточном проявлении признака. Например: окраска цветков у ночной красавицы. АА – красный, аа – белый, Аа – розовый. У человека фенилкетонурия рецессивно наследуемое заболевание. Больные – рецессивные гомозиготы. Здоровые – доминантные гомозиготы. Гетерозиготы фенотипически здоровы, но активность фермента, который отвечает за превращение аминокислоты в фенилаланин у гетерозигот 50%. АА – 100%, аа – 0%, Аа – 50% Кодоминирование. Аллельные гены могут проявлять себя независимо друг от друга. Это означает, что их одновременное присутствие в генотипе приводит к развитию 2-х признаков, это явление называется кодоминированием. Например: наследование 4 группы крови у человека, по системе АВО. Аллель I0 рецессивен и по отношению к аллелю IА, и по отношению к аллели IВ. Между собой аллели IА и IВ кодоминантны, т.е. совместно доминирующие. В результате их взаимодействия появляется новый фенотипический признак – четвёртая группа крови. Межаллельная комплементация. Это редко встречающийся вариант взаимодействия аллельных генов (описана у некоторых дрожжей). В генотипе организма могут присутствовать два мутантных аллельных гена, в результате в клетке синтезируются две измененные полипептидные цепи. Затем эти полипептидные цепи взаимодействуют, и образуется четвертичная структура белковой молекулы. Эта структура практически ничем не отличается от структуры нормального белка, а значит, не изменяются и функции белка. Аллельное исключение. У женщин две Х-хромосомы, но одна из них на 16 день внутриутробного развития спирализуется и превращается в тельце Бара. Не спирализованная Х-хромосома несёт рецессивный ген, который теперь не подавляется доминантным геном и проявляется в фенотипе организма. Таким образом, у гетерозиготного организма рецессивный ген проявляется в признак (гемофилия, дальтонизм). Роль аллельных генов:
В результате ряда мутаций одного гена может возникнуть серия множественных аллелей. Ген дикого типа А → А' → А'' → А'''. О серии множественных аллелей говорят в том случае, если число членов сери равно трём или больше трёх. Наследование серии множественных аллелей подчиняется законам Менделя, т.к. : – все аллели данной серии отвечают за развитие одного и того же признака. – каждый член серии полностью или не полностью подавляет других членов этой серии. – в диплоидном организме присутствуют только два члена серии множественных аллелей. У человека по такому типу наследуются группы крови по системе АВО. Серия множественных аллелей включает 3 члена (IO, IA, I B), отвечающие за наличие агглютиногенов на поверхности эритроцитов. IO – рецессивный ген. IA и IB – доминантные гены. Группы Генотипы Агглютиногены Агглютинины I (0) IOIO Нет и II (A) IAIA IAIO А III (B) IВIВ IВIO В IV (AB) IAIВ А и В Нет
Неаллельные гены это гены, находящиеся в негомологичных хромосомах или разных участках одной хромосомы и отвечающие за развитие разных признаков. Выделяют следующие формы взаимодействия неаллельных генов: эпистаз, комплементарность, полимерия. Эпистаз – явление, при котором ген подавляет действие другого НЕаллельного гена. Ген, который подавляет действие другого неаллельного гена, называется эпистатическим. Ген, действие которого подавляется, называется гипостатическим. Эпистатический ген может быть доминантным и рецессивным, поэтому различают доминантный и рецессивный эпистаз. Доминантный эпистаз. При этом эпистатический ген проявляет своё подавляющее действие, как в гомозиготном, так и в гетерозиготном состоянии. Например: желтая окраска тыквы обусловлена доминантным геном "А", а зеленая окраска – рецессивным генно "а". Но если в генотипе организма присутствует доминантный эпистатический ген "В" – то окраска у тыкв не развивается. ААВВ, АаВВ, АаВв, ААВв, ааВВ – белая окраска (наличие эпистатика "В") ААвв, Аавв – желтая окраска Аавв – зелёная окраска Рецессивный эпистаз. Рецессивный эпистатический ген проявляет своё действие только в гомозиготном состоянии. Он подавляет неаллельный ген, находящийся как в доминантном, так и рецессивном состоянии. Например, бомбейский феномен: у женщины с первой группой крови родился ребёнок с четвёртой группой. На самом деле генотип женщины был не I0I0, а IBIO, но в другой хромосоме присутствовал в гомозиготном состоянии рецессивный эпистатический ген hh. Этот ген подавлял проявление гена "В", и фенотипически группа крови определялась как первая. Итак, генотип женщины IBIOhh, а генотип её мужа IАIOНН (вторая группа крови). От этого брака и родились два ребёнка: с первой группой крови (I0I0Нh), и с четвёртой (IА IB Нh). Рецессивный эпистаз также является причиной рождения альбиносов у африканских негров.
Комплементарность (новообразование при скрещивании). Это такая форма взаимодействия неаллельных генов, когда признак развивается при одновременном присутствии в генотипе двух доминантных неаллельных генов. Каждый из этих генов не имеет самостоятельного проявления по данному признаку. Например: нормальный слух у человека развивается в том случае, если в генотипе присутствует два доминантных неаллельных гена "А" и "В". ААВВ, АаВв, ААВв, АаВВ – нормальный слух. ААвв, Аавв, ааВВ, ааВв, аавв – глухота. Эффект положения – взаимодействие неаллельных генов, обусловленное их положением в одной хромосоме. Гены, находящиеся рядом с данным геном, взаимодействуют с ним, при этом может изменяться фенотипическое проявление данного гена. Например, мобильные генетические элементы (прыгающие гены) могут оказаться рядом со структурным геном, и изменить его активность (повысить или понизить).
Полимерия – явление, когда несколько неаллельных доминантных генов отвечают за развитие одного признака. Т.к. признак один и тот же, то эти гены обозначают одинаковой буквой, но с разными индексами: А1А2А3 ……Аn. Полимерия – это явление полигенной наследственности. По такому типу наследуются количественные признаки (рост, телосложение, цвет кожи, умственные способности). Чем больше доминантных генов, тем ярче выражен признак в фенотипе. Так окраска кожи человека определяется четырьмя доминантными аллелями "Р": Р1 Р2 Р3 Р4 . Генотип негра: Р1Р1Р2Р2Р3Р3Р4Р4 Генотип белокожего человека: Р1Р1Р2Р2Р3Р3Р4Р4 Генотип мулата: Р1Р1Р2Р2Р3Р3Р4Р4
Фенотипическое проявление гена в признак зависит от состояния генотипа и условий внешней среды. Поэтому у одних организмов признак может быть ярко выражен, а у других этот же признак менее ярко выражен. В связи с этим в генетику вводится понятие экспрессивность и пенетрантность при характеристике фенотипического проявления генов. Экспрессивность – это степень выраженности гена в фенотипе носителей данного аллеля. Это качественный показатель работы гена. Экспрессивность может быть полной или изменяющейся. Так у желтого гороха при ряде заболеваний окраска венчика выражена сильнее или слабее. Пенетрантность – это степень проявления гена в признак. Это количественный показатель, он выражается в проценте особей, у которых данный ген проявляется в признак. Поле действия гена. Если поле действия гена широкое, то ген может отвечать за несколько признаков или отвечать за один признак, но влиять на проявление в фенотипе другого признака. Если поле действия гена узкое, то ген отвечает за один признак. Плейотропия, или множественное действие гена. Наряду с явлением взаимодействия генов есть много примеров влияния одного и того же гена на проявление разных признаков. У человека есть ген, определяющий рыжую окраску волос. Этот же ген обуславливает более светлую окраску кожи, а также появление веснушек. У больного болезнью Марфана (доминантный ген 15 хромосомы) отмечается совокупность аномалий, контролируемых одним и тем же геном: длинные, слегка согнутые пальцы, подвывих хрусталика, высокий свод стопы, впалая грудная клетка, хриплый голос и др. В основе множественного действия гена лежит его раннее проявление в онтогенезе. Генокопии – это ряд сходных по внешнему проявлению признаков, которые обусловлены различными неаллельными генами. Фенилкетонурия возникает при дефиците синтеза двух ферментов, катализирующих одну и ту же реакцию превращения фенилаланина в тирозин. Синтез ферментов (фенилаланингидроксилаза и дегидроптеридинредуктаза) контролируется разными генами, а фенотипическое проявление болезни одинаковое. Крыс до 50-х годов прошлого века успешно травили зоокумарином. В результате ряда мутаций у них появились 7 разных генов (7 генокопий), обеспечивающих устойчивость крыс к зоокумарину.
В генотипе постоянно происходит:
Таким образом, мы можем сделать вывод, что генотип человека – это не россыпь отдельных генов, а целостная система взаимодействующих генов, которая сформировалась в ходе эволюции. ЛЕКЦИЯ 8 Молекулярные основы наследственности.
В 1953 году была расшифрована пространственная структура ДНК. Возник вопрос: если ДНК отвечает за наследственные признаки то, как закодирована в ДНК наследственная информация о признаках и свойствах организма, т.е. о белках. В 1961 году Ф. Крик ввел понятие генетического кода и охарактеризовал свойства генетического кода. Генетический код – это принцип записи наследственной информации о последовательности аминокислот в белке, через последовательность нуклеотидов в ДНК. Генетический код обладает несколькими свойствами: 1. триплетность. Структура белка определяется последовательностью аминокислот. Последовательность аминокислот в белке кодируется последовательностью нуклеотидов в ДНК. В состав белков организмов входят 20 аминокислот, а нуклеотидов всего четыре, следовательно, для кодирования всех аминокислот необходимо сочетание нуклеотидов. Пары нуклеотидов дадут возможность кодирования 16 (42) аминокислот. Тройки нуклеотидов (триплет, или кодон) позволяют получить 64 (43) комбинации, что достаточно для кодирования всех аминокислот. 2. вырожденность. Раньше считали, что каждая аминокислота кодируется своим триплетом, тогда получалось, что 44 триплета (64-20 = 44) являются лишними. Оказалось, что одним триплетом кодируются только две аминокислоты (метионин и триптофан), остальные кодируются 2,3,4,6 триплетами. Так аминокислоты лейцин, серин, аргинин кодируются шестью триплетами каждая. Кодирование одной аминокислоты несколькими триплетами и есть вырожденность. Всего в кодировании занят 61 кодон. Три кодона: АТТ, АТЦ, АЦТ кодируют не аминокислоты, а окончание записи информации о первичной структуре белка (как точка в конце предложения). Это стоп – кодоны, которые являются последним триплетом гена. Когда стоп-кодоны перепишутся на и-РНК, они будут выглядеть так: УАА, УАГ, УГА. Теперь они будут означать окончание синтеза белка. 3. непрерывность – за одним триплетом идет следующий триплет, между триплетами нет промежутков и нет одиночных нуклеотидов. 4. неперекрываемость – последний нуклеотид предыдущего триплета не является началом следующего триплета. 5. однозначность – каждый триплет кодирует только одну аминокислоту. 6. универсальность – сущность кодирования одинакова от бактерий до человека.
Транскрипция это сложный ферментативный процесс, который требует расхода энергии АТФ. В эукариотической клетке этот процесс протекает в ядре. Основной фермент транскрипции, называется РНК-полимераза. У прокариот существует 1 вид данного фермента. У эукариот существует 3 вида фермента: РНК-полимераза 1 – отвечает за синтез крупных рРНК, она локализована в ядрышке. РНК-полимераза 2 – отвечает за синтез иРНК, она локализована в цитоплазме РНК-полимераза 3 – отвечает за синтез тРНК и мелких рРНК (она локализована в рибосомах). Выделяют 3 этапа транскрипции: стадия инициации, стадия элонгации, стадия терминации. І. Стадия инициации. На первом этапе РНК полимераза узнает определенную последовательность нуклеотидов в ДНК перед геном, эта последовательность называется – промотор. Узнав промотор, РНК-полимераза фиксируется на нем, затем происходит расплетание двойной спирали ДНК, и участок одной цепи ДНК становится матрицей для синтеза молекулы и-РНК. ІІ стадии элонгации (удлинения). РНК-полимераза движется вдоль этого участка, синтезируя молекулу и-РНК. Синтез идет из свободных нуклеотидов присутствующих в ядерном соке и основан на принципе комплементарности. ЦДНК Г РНК ГДНК ЦРНК ТДНК АРНК АДНК УРНК ІІІ. Стадия терминации. Синтез РНК продолжается до тех пор, пока РНК- полимераза не достигнет особой последовательности нуклеотидов, которая называется терминирующий сигнал транскрипции или стоп сигнал. На этом транскрипция заканчивается, освобождается молекула и-РНК и фермент РНК- полимераза, восстанавливается двойная спираль ДНК. В результате транскрипции образуется первичный транскрипт иРНК. Первичный транскрипт РНК у прокариот является зрелой иРНК, которая сразу становится матрицей для синтеза белка. У эукариот в ядре клетки синтезируется незрелая молекула иРНК (про иРНК). Процесс созревания иРНК называется – процессингом, он протекает в ядре. Процессинг РНК включает три одновременно идущих процесса: кэпирование – к 5' концу иРНК присоединяется метилированный остаток гуанозина, эта структура называется кэп (шапочка). Кэп способствует связыванию иРНК с рибосомой в цитоплазме. Полиаденилирование – к 3' концу молекулы иРНК присоединяется от 100 до 200 адениловых нуклеотидов. Образуется поли-А-участок. Этот участок стабилизирует молекулу иРНК, и способствует ее выходу из ядра в цитоплазму. Сплайсинг – это вырезание интронов из молекулы иРНК и сшивание экзонов при помощи ферментов лигаз. В результате процессинга в ядре формируется зрелая молекула иРНК, которая перемещается из ядра в цитоплазму для синтеза белка. Только 3–5% зрелых иРНК попадают в цитоплазму, остальные разрушаются в ядре.
Трансляция – это процесс биосинтеза белка на матрице иРНК. Для этого процесса необходимы рибосомы, аминокислоты, иРНК, тРНК, АТФ, ферменты. тРНК – класс низкомолекулярных нуклеиновых кислот, содержащих от 70 до 90 нуклеотидов. У тРНК имеется первичная, вторичная, и третичная структура. Первичная структура – последовательность нуклеотидов в молекуле тРНК. Вторичная структура тРНК имеет вид листка клевера, это связано с тем, что между отдельными нуклеотидами возникают водородные связи по принципу комплементарности. На одном конце молекулы тРНК имеется участок, состоящий из 3-х нуклеотидов – это антикодон, он узнает соответствующий кодон в молекуле иРНК. На другом конце молекулы находится акцепторный участок, к которому присоединяется соответствующая аминокислота. Для каждой аминокислоты существует своя тРНК, однако, тРНК не 20 видов (как аминокислот), а 61 (по количеству кодонов иРНК). Аминокислота присоединяется к акцепторному участку тРНК с помощью фермента аминоацил-тРНК-синтетазы. Так образуется аминоацил-тРНК. В процессе трансляции выделяют 3 стадии:
На стадии инициации образуется рибосома присоединяется к иРНК, этому способствует КЭП участок иРНК. Затем к рибосоме приходит первая тРНК со своей аминокислотой. У эукариот это всегда тРНК, несущая аминокислоту метионин (её кодон в иРНК АУГ). У прокариот первой походит тРНК, несущая аминокислоту формилметионин. Своим антикодоном метиониновая тРНК узнает соответствующий кодон в молекуле иРНК. На стадии элонгации происходит синтез полипептидной цепи. В рибосоме выделяют функциональный центр, который состоит из 2х участков. А участок – аминоацил-тРНК-связывающий участок Р участок – пептидил-тРНК-связывающий участок С функционированием этих участков связано удлинение полипептидной цепи белка. Допустим, пептидная цепь определенной длины уже синтезирована. В “А” участок рибосомы поступает аминоацил-тРНК. Если антикодон тРНК комплементарен кодону иРНК, то данная тРНК со своей аминокислотой остается в “А” участке. Далее ферменты рибосомы разрывают связь между пептидилом и тРНК, которая находится в “Р” участке. Свободная тРНК уходит из “Р” участка. Другие ферменты рибосомы устанавливают пептидную связь между пептидилом и аминокислотой, которая находится в “А” участке. За счёт соединения карбонильной группы с аминогруппой происходит удлинение пептидной цепи на одну аминокислоту. Далее рибосома делает один шаг, равный трём нуклеотидам, вдоль молекулы иРНК, и комплекс пептидил-тРНК перемещается из “А” участка в “Р” участок. Таким образом “А” участок свободен и готов принять новую тРНК с аминокислотой, и цикл повторяется снова. На стадия терминации заканчивается синтез полипептидной цепи. Это происходит в тот момент, когда в “А” участок рибосомы приходит один из стоп кодонов (УАА, УАГ, УГА). Им не соответствует ни одна аминокислота и после нескольких неудачных попыток нарастить полипептидную цепь рибосома распадается на субъединицы, а молекула полипептида отсоединяется от иРНК. Примечание По окончании синтеза полипептида аминокислота метионин (или формилметионин у прокариот), с которой начинался синтез может отщепляться от молекулы полипептида.
В 1902 году Арчибальд Гаррод, изучая наследственные болезни, связанные с дефектом обмена веществ, предположил, что за синтез определённого фермента отвечает один ген (гипотеза один ген – один фермент). Позднее Бидл и Татум экспериментально доказали это положение. В конце 40-х годов ученые установили, что синтез всех белков (а не только ферментов) находится под контролем генов. Гипотеза приобрела вид: один ген – один белок. Однако с открытием мультимерных белков (молекула таких белков состоит из нескольких полипептидных цепей) встал вопрос: один ген кодирует синтез всех цепей или каждая полипептидная цепь кодируется своим геном? В 1957г Ингрэм установил, что причина серповидно-клеточной анемии – генная мутация, приводящая к замене в молекуле гемоглобина в 6 положении глутаминовой кислоты на валин. Белок гемоглобина человека (глобин) состоит из двух α-цепей и двух β- цепей. Замена аминокислоты всегда наблюдается только в β-цепи, а α-цепь остаётся нормальной. Следовательно, мутировавший ген кодирует только одну цепь, а вторая цепь кодируется другим геном. Позже выяснили, что гены, кодирующие α-цепь находятся в 16 хромосоме, а гены, кодирующие β-цепь находятся в 11 хромосоме. Гипотеза приобрела вид: один ген – одна полипептидная цепь. 5. Регуляция экспрессии генов у прокариот и эукариот. Впервые регуляция экспрессии генов на уровне транскрипции была изучена у прокариот в 1961 году французскими учеными Ф. Жакобом и Ж. Моно. Они предложили модель оперона.Оперон состоит из гена регулятора, гена оператора и структурных генов, в которых записана информация и первичной структуре белка. Перед структурными генами находится особая последовательность нуклеотидов, которая называется оператор. Известно, что последовательности нуклеотидов оператора и промотора перекрываются.
Ген регулятор кодирует синтез белка репрессора. Этот белок взаимодействует с оператором и блокирует его. Если заблокирован оператор, то блокируется и часть промотора. РНК-полимераза не может присоединиться к промотору, поэтому транскрипция не происходит и синтез белка не идёт. Это не активное состояние оперона. При связывании белка репрессора ген оператор и промотор открыты, РНК-полимераза начинает процесс транскрипции, и происходит синтез белка. Что же связывает белок репрессор? -- вещества, которые могут находиться в клетке или поступающие в неё извне. Эти вещества называются индукторами (индукция – наведение, запуск). Они связываются с белком репрессором и блокируют его. Теперь ген оператор освобождается от белка репрессора и запускает процесс синтеза белка. Такое состояние оперона называется активным. У эукариот выделяют несколько уровней регуляции экспрессии генов. – на уровне транскрипции – на уровне процессинга иРНК – на уровне выхода зрелой иРНК из ядра в цитоплазму. – на уровне трансляции с помощью веществ, которые блокируют взаимодействие зрелой иРНК с рибосомами (антибиотики, химиопрепараты). 6. Классификация генов: структурные и регуляторные. Все гены клетки в организме можно разделить на 2 группы, это: – структурные гены, которые отвечают за все белки организма, за рРНК, и тРНК. – регуляторные гены, которые соответственно регулируют работу структурных генов. 7. Цитоплазматическая наследственность. Главная роль в передаче наследственных свойства принадлежит хромосомам. С ними связаны закономерности, открытые Г. Менделем. Но ряд органоидов, расположенных в цитоплазме содержит ДНК (митохондрии, пластиды). Их ДНК способна к репликации, и с ней может быть связана передача цитоплазматической наследственности. Существуют сорта львиного зева, ночной красавицы и некоторых других растений, у которых наряду с зелёными листьями встречаются пёстрые, с белыми пятнами – участкам, лишёнными хлорофилла. В связи с тем, что организм, образуемый вследствие оплодотворения, получает цитоплазматические структуры главным образом от яйцеклетки, цитоплазматическое наследование признаков осуществляется по материнской линии. В клетках прокариот и эукариот обнаруживаются плазмиды – отрезки ДНК, имеющие кольцевую или линейную форму и способные к самостоятельной (независимо от ядра) репликации. У бактерии наблюдается передача плазмид от клетки к клетке при их непосредственном контакте, а распределение их по дочерним клеткам при делении происходит случайно. Наличие плазмид может обеспечивать устойчивость бактерий к определённым антибиотикам. У растений и животных плазмиды могут существенно влиять на свойства многоклеточного организма. ЛЕКЦИЯ 9 Фенотипическая и генотипическая изменчивость. |