Главная страница
Навигация по странице:

  • Адрес 0 1 2

  • Лекции по схемотехнике ЭВМ. Лекция Базовые понятия цифровой электроники версия для печати и pda в лекции рассказывается о базовых терминах цифровой электроники, о цифровых сигналах, об уровнях представления цифровых устройств, об их электрических и временных параметрах


    Скачать 5.63 Mb.
    НазваниеЛекция Базовые понятия цифровой электроники версия для печати и pda в лекции рассказывается о базовых терминах цифровой электроники, о цифровых сигналах, об уровнях представления цифровых устройств, об их электрических и временных параметрах
    АнкорЛекции по схемотехнике ЭВМ.doc
    Дата19.05.2018
    Размер5.63 Mb.
    Формат файлаdoc
    Имя файлаЛекции по схемотехнике ЭВМ.doc
    ТипЛекции
    #19427
    КатегорияИнформатика. Вычислительная техника
    страница27 из 42
    1   ...   23   24   25   26   27   28   29   30   ...   42


    11. Лекция: Постоянная память: версия для печати и PDA

    В лекции рассказывается о типах микросхем памяти и о микросхемах постоянной памяти, их алгоритмах работы, параметрах, типовых схемах включения, а также о способах реализации на их основе некоторых часто встречающихся функций.







    Микросхемы памяти (или просто память, или запоминающие устройства — ЗУ, английское "Memory") представляют собой следующий шаг на пути усложнения цифровых микросхем по сравнению с микросхемами, рассмотренными ранее. Память — это всегда очень сложная структура, включающая в себя множество элементов. Правда, внутренняя структура памяти — регулярная, большинство элементов одинаковые, связи между элементами сравнительно простые, поэтому функции, выполняемые микросхемами памяти, не слишком сложные.

    Память, как и следует из ее названия, предназначена для запоминания, хранения каких-то массивов информации, проще говоря, наборов, таблиц, групп цифровых кодов. Каждый код хранится в отдельном элементе памяти, называемом ячейкой памяти. Основная функция любой памяти как раз и состоит в выдаче этих кодов на выходы микросхемы по внешнему запросу. А основной параметр памяти — это ее объем, то есть количество кодов, которые могут в ней храниться, и разрядность этих кодов.

    Для обозначения количества ячеек памяти используются следующие специальные единицы измерения:

    • 1К — это 1024, то есть 210 (читается "кило-"" или "ка-"), примерно равно одной тысяче;

    • 1М — это 1048576, то есть 220 (читается "мега-"), примерно равно одному миллиону;

    • 1Г — это 1073741824, то есть 230 (читается "гига-"), примерно равно одному миллиарду.

    Принцип организации памяти записывается следующим образом: сначала пишется количество ячеек, а затем через знак умножения (косой крест) — разрядность кода, хранящегося в одной ячейке. Например, организация памяти 64Кх8 означает, что память имеет 64К (то есть 65536) ячеек и каждая ячейка — восьмиразрядная. А организация памяти 4М х 1 означает, что память имеет 4М (то есть 4194304) ячеек, причем каждая ячейка имеет всего один разряд. Общий объем памяти измеряется в байтах (килобайтах — Кбайт, мегабайтах — Мбайт, гигабайтах — Гбайт) или в битах (килобитах — Кбит, мегабитах — Мбит, гигабитах — Гбит).

    В зависимости от способа занесения (записи) информации и от способа ее хранения, микросхемы памяти разделяются на следующие основные типы:

    • Постоянная память (ПЗУ — постоянное запоминающее устройство, ROM — Read Only Memory — память только для чтения), в которую информация заносится один раз на этапе изготовления микросхемы. Такая память называется еще масочным ПЗУ. Информация в памяти не пропадает при выключении ее питания, поэтому ее еще называют энергонезависимой памятью.

    • Программируемая постоянная память (ППЗУ — программируемое ПЗУ, PROM — Programmable ROM), в которую информация может заноситься пользователем с помощью специальных методов (ограниченное число раз). Информация в ППЗУ тоже не пропадает при выключении ее питания, то есть она также энергонезависимая.

    • Оперативная память (ОЗУ — оперативное запоминающее устройство, RAM — Random Access Memory — память с произвольным доступом), запись информации в которую наиболее проста и может производиться пользователем сколько угодно раз на протяжении всего срока службы микросхемы. Информация в памяти пропадает при выключении ее питания.

    Существует множество промежуточных типов памяти, а также множество подтипов, но указанные — самые главные, принципиально отличающиеся друг от друга. Хотя, разница между ПЗУ и ППЗУ с точки зрения разработчика цифровых устройств, как правило, не так уж велика. Только в отдельных случаях, например, при использовании так называемой флэш-памяти (flash-memory), представляющей собой ППЗУ с многократным электрическим стиранием и перезаписью информации, эта разница действительно чрезвычайно важна. Можно считать, что флэш-память занимает промежуточное положение между ОЗУ и ПЗУ.

    В общем случае любая микросхема памяти имеет следующие информационные выводы (рис. 11.1):


    Рис. 11.1.  Микросхемы памяти: ПЗУ (а), ОЗУ с двунаправленной шиной данных (б), ОЗУ с раздельными шинами входных и выходных данных (в)

    • Адресные выводы (входные), образующие шину адреса памяти. Код на адресных линиях представляет собой двоичный номер ячейки памяти, к которой происходит обращение в данный момент. Количество адресных разрядов определяет количество ячеек памяти: при количестве адресных разрядов n количество ячеек памяти равно 2n.

    • Выводы данных (выходные), образующие шину данных памяти. Код на линиях данных представляет собой содержимое той ячейки памяти, к которой производится обращение в данный момент. Количество разрядов данных определяет количество разрядов всех ячеек памяти (обычно оно бывает равным 1, 4, 8, 16). Как правило, выходы данных имеют тип выходного каскада ОК или 3С.

    • В случае оперативной памяти, помимо выходной шины данных, может быть еще и отдельная входная шина данных, на которую подается код, записываемый в выбранную ячейку памяти. Другой возможный вариант — совмещение входной и выходной шин данных, то есть двунаправленная шина, направление передачи информации по которой определяется управляющими сигналами. Двунаправленная шина применяется обычно при количестве разрядов шины данных 4 или более.

    • Управляющие выводы (входные), которые определяют режим работы микросхемы. В большинстве случаев у памяти имеется вход выбора микросхемы CS (их может быть несколько, объединенных по функции И). У оперативной памяти также обязательно есть вход записи WR, активный уровень сигнала на котором переводит микросхему в режим записи.

    Мы в данной лекции не будем, конечно, изучать все возможные разновидности микросхем памяти, для этого не хватит целой книги. К тому же эта информация содержится в многочисленных справочниках. Микросхемы памяти выпускаются десятками фирм во всем мире, поэтому даже перечислить все их не слишком просто, не говоря уже о том, чтобы подробно рассматривать их особенности и параметры. Мы всего лишь рассмотрим различные схемы включения типичных микросхем памяти для решения наиболее распространенных задач, а также методы проектирования некоторых узлов и устройств на основе микросхем памяти. Именно это имеет непосредственное отношение к цифровой схемотехнике. И именно способы включения микросхем мало зависят от характерных особенностей той или иной микросхемы той или иной фирмы.

    В данном разделе мы не будем говорить о флэш-памяти, так как это отдельная большая тема. Мы ограничимся только простейшими микросхемами ПЗУ и ППЗУ, информация в которые заносится раз и навсегда (на этапе изготовления или же самим пользователем). Мы также не будем рассматривать здесь особенности оборудования для программирования ППЗУ (так называемых программаторов), принципы их построения и использования, — это отдельная большая тема. Мы будем считать, что нужная нам информация может быть записана в ПЗУ или ППЗУ, а когда, как, каким способом она будет записана, нам не слишком важно. Все эти допущения позволят нам сосредоточиться именно на схемотехнике узлов и устройств на основе ПЗУ и ППЗУ (для простоты будем называть их в дальнейшем просто ПЗУ).

    Упомянем здесь только, что ППЗУ делятся на репрограммируемые или перепрограммируемые ПЗУ (РПЗУ, EPROM — Erasable Programmable ROM), то есть допускающие стирание и перезапись информации, и однократно программируемые ПЗУ. В свою очередь, РПЗУ делятся на ПЗУ, информация в которых стирается электрическими сигналами (EEPROM — Electrically Erasable Programmable ROM), и на ПЗУ, информация в которых стирается ультрафиолетовым излучением через специальное прозрачное окошко в корпусе микросхемы (собственно EPROM — Erasable Programmable ROM). Запись информации в любые ППЗУ производится с помощью подачи определенных последовательностей электрических сигналов (как правило, повышенного напряжения) на выводы микросхемы.

    Фирмами-производителями цифровых микросхем выпускается немало самых разнообразных ПЗУ и ППЗУ. Различаются микросхемы постоянной памяти своим объемом (от 32 байт до 8 Мбайт и более), организацией (обычно количество разрядов данных бывает 4, 8 или 16), способами управления (назначением управляющих сигналов), типами выходных каскадов (обычно ОК или 3С), быстродействием (обычно задержка составляет от единиц до сотен наносекунд). Но суть всех микросхем ПЗУ остается одной и той же: имеется шина адреса, на которую надо подавать код адреса нужной ячейки памяти, имеется шина данных, на которую выдается код, записанный в адресуемой ячейке, и имеются входы управления, которые разрешают или запрещают выдачу информации из адресуемой ячейки на шину данных.


    Рис. 11.2.  Примеры микросхем ППЗУ отечественного производства

    На рис. 11.2 представлены для примера несколько простейших и типичных микросхем постоянной памяти.

    Микросхема К155РЕ3 (аналог — N8223N) представляет собой однократно программируемое ППЗУ с организацией 32 х 8. Исходное состояние (до программирования) — все биты всех ячеек нулевые. Для программирования (записи информации) используется специальный программатор, подающий на разряды данных импульсы высокого напряжения. Тип выходных каскадов — открытый коллектор, то есть обязательно надо включать на выходах резисторы, подсоединенные к шине питания. Имеется один управляющий вход –CS, при положительном уровне сигнала на котором на всех выходах устанавливаются единицы.

    Микросхема КР556РТ4 (аналог — I3601) — это также однократно программируемая постоянная память с организацией 256х4. Исходное состояние (до программирования): все биты всех ячеек нулевые. Тип выходных каскадов — ОК. Два управляющих входа -CS1 и –CS2 объединены по принципу И, то есть для разрешения работы микросхемы (для перевода выходов в активное состояние) оба эти сигнала должны быть нулевыми. Для записи информации в микросхему используется программатор.

    Микросхема КР556РТ18 (аналог — HM76161) также является однократно программируемым ППЗУ и имеет организацию 2Кх8. Тип выходов микросхемы — 3С. Имеются три управляющих входа: один инверсный –CS1, два других — прямые CS2 и CS3, объединенных по функции И. Выходы данных переходят в активное состояние при нулевом уровне на –CS1 и при единичных уровнях на CS2 и CS3. Если входы управления используются для подачи управляющих сигналов (то есть выходы могут переходить в третье состояние) то на выходы надо включать нагрузочные резисторы, подключенные к шине питания. Исходное состояние микросхемы (до программирования) — все биты всех ячеек в единице.

    Наконец, микросхема К573РФ8 (аналог — I27256) — это пример памяти РПЗУ с ультрафиолетовым стиранием информации. Чтобы перепрограммировать память, необходимо ее стереть, для чего в течение некоторого времени (обычно несколько минут) надо облучать микросхему через окошко в корпусе ультрафиолетовым светом (можно использовать медицинский кварцевый облучатель). Стертая микросхема имеет все биты, установленные в единицу. Затем проводится процедура записи с помощью программатора, несколько отличающегося от программаторов однократно программируемых микросхем. Управляющие входы –CS и –CE должны быть установлены в нуль для перевода выходов микросхемы в активное состояние. Имеется специальный вход UPR для подачи программирующего высокого напряжения, который при чтении информации из микросхемы надо подключать к напряжению питания. Тип выходных каскадов — 3С. Микросхемы этого типа самые медленные, их задержки самые большие.

    Основные временные характеристики микросхем ПЗУ — это две величины задержки. Задержка выборки адреса памяти — время от установки входного кода адреса до установки выходного кода данных. Задержка выборки микросхемы — время от установки активного разрешающего управляющего сигнала CS до установки выходного кода данных памяти. Задержка выборки микросхемы обычно в несколько раз меньше задержки выборки адреса.

    Содержимое ПЗУ обычно изображается в виде специальной таблицы, называемой картой прошивки памяти. В таблице показывается содержимое всех ячеек памяти, причем в каждой строке записывается содержимое 16 (или 32) последовательно идущих (при нарастании кода адреса) ячеек. При этом, как правило, используется 16-ричное кодирование.

    Таблица 11.1. Пример карты прошивки ПЗУ

    Адрес

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    A

    B

    C

    D

    E

    F

    00

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    10

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    20

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    30

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    40

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    50

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    60

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    70

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    80

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    90

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    A0

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    B0

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    C0

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    D0

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    E0

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    F0

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF

    FF
    1   ...   23   24   25   26   27   28   29   30   ...   42


    написать администратору сайта