Лимфатические капилляры. Особенности строения и функции
Скачать 1.55 Mb.
|
Билет №1.
ЛК в отличие от гемокапилляров начинаются слепо и имеют больший диаметр. Внутренняя поверхность выстлана эндотелием, базальная мембрана отсутствует. Под эндотелием располагается рыхлая волокнистая сдт с большим содержанием ретикулярных волокон. Диаметр ЛК непостоянен - имеются сужения и расширения. Лимфатические капилляры сливаясь образуют внутриорганные лимфатические сосуды - по строению близки к венам, т.к. находятся в одинаковых гемодинамических условиях. Имеют 3 оболочки, внутренняя оболочка образует клапаны; в отличие от вен под эндотелием базальная мембрана отсутствует. Диаметр на протяжении не постоянен - имеются расширения на уровне клапанов. Экстраорганные лимфатические сосуды также по строению схожи с венами, но базальная мемрана эндотелия плохо выражена, местами отсутствует. В стенке этих сосудов четко выделяется внутренняя эластическая мембрана. Средняя оболочка особого развития получает в нижних конечностях. Диаметр лимфокапилляров равен 20-30 мкм. Они выполняют дренажную, функцию: всасывают из соединительной ткани тканевую жидкость. Для того, чтобы капилляр не спадался, имеются стропные или якорные филаменты, которые одним концом прикрепляются к эндотелиоцитам, а другим вплетаются в рыхлую волокнистую соединительную ткань.
Пластинчатая костная ткань образует большую часть скелета взрослого человека. Она состоит из костных пластинок, образованных костными клетками и минерализованным аморфным веществом с коллагеновыми волокнами, ориентированными в определенном направлении. В соседних пластинках волокна имеют разное направление, что обеспечивает большую прочность пластинчатой костной ткани. Пластинчатая костная ткань образует на компактное и губчатое вещество кости. Кость как орган. Компактное вещество, формирующее диафизы трубчатых костей, состоит из костных пластинок, которые располагаются в определенном порядке, образуя сложные системы. Диафиз трубчатой кости состоит из трех слоев - слоя наружных генеральных пластин, слоя гаверсовых систем (остеонов), слоя внутренних генеральных пластин. Наружные генеральные пластины располагаются под надкостницей, внутренние - со стороны костного мозга. Эти пластины охватывают кость целиком, образуя концентрическую слоистость. Через генеральные пластины внутрь кости проходят каналы, в которых идут кровеносные сосуды. Каждая пластина состоит из основного вещества, в котором параллельными рядами идут пучки оссеиновых (коллагеновых) волокон. Остеоциты лежат между пластинами. В среднем слое костные пластинки располагаются концентрически вокруг канала, где проходят кровеносные сосуды, образуя остеон (гаверсову систему). Остеон представляет собой систему цилиндров, вставленных один в другой. Такая конструкция придает кости чрезвычайную прочность. В двух смежных пластинках пучки оссеиновых волокон идут в различных направлениях. Между остеонами располагаются вставочные (промежуточные) пластинки. Это части бывших остеонов. Тубчатое вещество формирует плоские кости и эпифизы трубчатых костей. Его пластинки образуют камеры (ячейки), в которых находится красный костный мозг. Надкостница (периост) имеет два слоя: наружный (волокнистый) и внутренний (клеточный), содержащий остеобласты и остеокласты. Через надкостницу проходят питающие кость сосуды и нервы; они принимают участие в трофике, развитии, росте и регенерации кости. Регенерация и возрастные изменения. В костной ткани в течение всей жизни человека происходят процессы разрушения и созидания. Они идут и после окончания роста кости. Причина этого - изменение физической нагрузки на кость. 3.Органеллы специального назначения (микроворсинки, реснички, тонофибриллы, миофибриллы), их строение и функции. Органеллы специального назначения – это постоянно присутствующие и обязательные для отдельных клеток микроструктуры, выполняющие особые функции, которые обеспечивают специализацию ткани и органа. К ним относят: – реснички, – жгутики, – микроворсинки, – миофибриллы. Реснички – органеллы, представляющие собой тонкие (постоянным диаметром 300 нм) волосковидные структуры на поверхности клеток, выросты цитоплазмы. Длина их может составлять от 3–15 мкм до 2 мм. Могут быть подвижными или нет: неподвижные реснички играют роль рецепторов, участвуют в процессе движения. В основе реснички лежит аксонема (осевая нить), отходящая от базального тельца. Аксонема образована микротрубочками по схеме: (9 х 2) + 2. Это значит, что по её окружности расположены девять дуплетов микротрубочек, а ещё пара микротрубочек идёт вдоль оси аксонемы и заключены в центральный футляр. Микроворсинка – вырост клетки, имеющий пальцевидную форму и содержащий внутри цитоскелет из актиновых микрофиламентов. В организме человека микроворсинки имеют клетки эпителия тонкого кишечника, на апикальной поверхности которых микроворсинки формируют щеточную кайму. Микроворсинки не содержат микротрубочек и способны лишь к медленным изгибаниям (в кишечнике) либо неподвижны. Каркас каждой микроворсинки образован пучком, содержащем около 40 микрофиламентов, лежащих вдоль длинной ее оси. За упорядочение актинового цитоскелета микроворсинок отвечают вспомогательные белки, взаимодействующие с актином – фимбрин, спектрин, виллин и др. Микроворсинки также содержат цитоплазматический миозин нескольких разновидностей. Микроворсинки во много раз увеличивают площадь поверхности всасывания. Кроме того у позвоночных на их плазмолемме закреплены пищеварительные ферменты, обеспечивающие пристеночное пищеварение. Миофибриллы – органеллы клеток поперечнополосатых мышц, обеспечивающие их сокращение. Служат для сокращений мышечных волокон, состоят из саркомеров. Билет №2. 1.Оболочки головного и спинного мозга. Строение и функциональное значение. Головной мозг защищен костями черепа, а спинной — позвонками и межпозвонковыми дисками; они окружены тремя мозговыми оболочками (снаружи внутрь): твердой, паутинной и мягкой, которые фиксируют эти органы в черепе и позвоночном канале и выполняют защитную, амортизирующую функции, обеспечивают выработку и всасывание спинномозговой жидкости. Твердая мозговая оболочка (dura mater) образована плотной волокнистой соединительной тканью с высоким содержанием эластических волокон. В позвоночном канале между ней и телами позвонков имеется эпидуральное пространство, заполненное рыхлой волокнистой соединительной тканью, богатой жировыми клетками, и содержащее многочисленные кровеносные сосуды. Паутинная мозговая оболочка (arachnoidea) неплотно прилежит к твердой мозговой оболочке, от которой ее отделяет узкое субдуральное пространство, содержащее небольшое количество тканевой жидкости отличной от спинномозговой жидкости. Паутинная оболочка образована соединительной тканью с высоким содержанием фибробластов; между ней и мягкой мозговой оболочкой располагается заполненное спинномозговой жидкостью широкое субарахноидальное пространство, которое пересекают многочисленные тонкие ветвящиеся соединительнотканные тяжи (трабекулы), отходящие от паутинной оболочки и вплетающиеся в мягкую мозговую оболочку. В этом пространстве проходят крупные кровеносные сосуды, ветви которых питают мозг. На поверхностях, обращенных в субдуральное и субарахноидальное пространство, паутинная оболочка выстлана слоем плоских глиальных клеток, покрывающим и трабекулы. Ворсинки паутинной оболочки — (наиболее крупные из них — пахионовы грануляции — видны макроскопически) служат участками, через которые вещества из спинномозговой жидкости возвращаются в кровь. Они представляют собой бессосудистые выросты паутинной оболочки головного мозга грибовидной формы, содержащие сеть щелевидных пространств и выпячивающиеся в просвет синусов твердой мозговой оболочки. Мягкая мозговая оболочка (pia mater), образованная тонким слоем соединительной ткани с высоким содержанием мелких сосудов и нервных волокон, непосредственно покрывает поверхность мозга, повторяя его рельеф и проникая в борозды. На обеих поверхностях (обращенной в субарахноидальное пространство и прилежащей к тканям мозга) она покрыта менинготелием. Мягкая мозговая оболочка окружает сосуды, проникающие в мозг, образуя вокруг них периваскулярную паильную мембрану, которая в дальнейшем (по мере уменьшения калибра сосуда) сменяется периваскулярной пограничной глиальной мембраной, образованной астроцитами. 2.Красный костный мозг. Строение и функциональное значение. Красный костный мозг является центральным органом гемопоэза и иммуногенеза. В нем находится основная часть стволовых кроветворных клеток, происходит развитие клеток лимфоидного и миелоидного рядов. . ККМ в эмбриональном периоде закладывается из мезенхимы на 2-ом месяце, к 4-му месяцу становится центром кроветворения. ККМ - ткань полужидкой консистенции, темно-красного цвета из-за большого содержания эритроцитов. Небольшое количество ККМ для исследований можно получить путем пункции грудины или гребня подвздошной кости. В эмбриогенезе красный костный мозг появляется на 2-м месяце в плоских костях и позвонках, на 4-м месяцев трубчатых костях. У взрослых он находится в эпифизах трубчатых костей, губчатом веществе плоских костей, костях черепа. Масса красного мозга составляет 1,3—3,7 кг. Строение красного мозга в целом подчиняется строению паренхиматозных органов. Его строма представлена:
В ретикулярной ткани находится множество кровеносных сосудов, в основном синусоидных капилляров, не имеющих базальной мембраны, но имеющих поры в эндотелии. В петлях ретикулярной ткани находятся гемопоэтические клетки на разных стадиях дифференцировки: от стволовой до зрелых (паренхима органа). Количество стволовых клеток в красном костном мозге наибольшее. Развивающиеся клетки крови лежат островками. Эти островки представлены дифферонами различных клеток крови. Эритробластические островки обычно формируются вокруг макрофага, который называется клеткой-кормилкой. Клетка-кормилка захватывает железо, попадающее в кровь из погибших в селезенке старых эритроцитов, и отдаст его образующимся эритроцитам для синтеза гемоглобина. Созревающие гранулоциты формируют гранулобластические островки. Клетки тромбоцитарного ряда (мегакариобласты, про- и мегакариоциты) лежат рядом с синусоидными капиллярами. Отростки мегакариоцитов проникают в капилляры и от них постоянно отделяются тромбоциты. Вокруг кровеносных сосудов встречаются небольшие группы лимфоцитов и моноцитов. Среди клеток красного костного мозга преобладают зрелые и заканчивающие дифференцировку клетки (депонирующая функция костного мозга). Они при необходимости поступают в кровь. В норме в кровь поступают только зрелые клетки. Наряду с красным существует желтый костный мозг. Он обычно находится в диафизах трубчатых костей. Он состоит из ретикулярной ткани, которая местами заменена на жировую. Кроветворные клетки отсутствуют. Желтый костный мозг представляет собой своеобразный резерв для красного костного мозга. При кровопотерях в него заселяются гемопоэтические элементы, и он превращается в красный костный мозг. Таким образом, желтый и красный костный мозг можно рассматривать как два функциональных состояний одного кроветворного органа. В кровоснабжении костного мозга принимают участие артерии, питающие кость. Поэтому характерна множественность его кровоснабжения. Артерии проникают в костномозговую полость и делятся на две ветви: дистальную и проксимальную. Эти ветви спирально закручиваются вокруг центральной вены костного мозга. Артерии разделяются на артериолы, отличающиеся небольшим диаметром, для них характерно отсутствие прекапиллярных сфинктеров. Капилляры костного мозга делятся на истинные капилляры, возникающие в результате дихотомического деления артериол, и синусоидные капилляры, продолжающие истинные капилляры. Синусоидные капилляры лежат большей частью вблизи эндоста кости и выполняют функцию селекции зрелых клеток крови и выделения их в кровоток, а также участвуют в заключительных этапах созревания клеток крови, осуществляя воздействие на В красном костном мозге происходит антигеннезависимая дифференцировка В-лимфоцитов, в ходе дифференцировки В-лимфоциты приобретают на своей поверхности разные рецепторы к различным антигенам. Созревшие В-лимфоциты покидают красный костный мозг и заселяют В-зоны периферических органов иммунопоэза. До 75 % В-лимфоцитов образующихся в красном костном мозге здесь же и погибают (апоптоззапрограммированная в генах гибель клеток). Наблюдается так называемая селекция или отбор клеток, она может быть: "+" селекция позволяет выживать клеткам с нужными рецепторами; "-" селекция обеспечивает гибель клеток, обладающих рецепторами к собственным клеткам. Погибшие клетки фагоцитируются макрофагами. 3.Внутриклеточная регенерация. Общая морфо-функциональная характеристика. Биологическое значение. Регенерация- универсальное свойство живого, присущее всем организмам, восстановление утраченных или поврежденных органов и тканей, а также восстановление целого организма из его частей (соматический эмбриегенез). Термин был предложен Реомюром в 1712 году. Внутриклеточная регенерация – процесс восстановления макромолекул и органелл. Увеличение числа органелл достигается усилением их образования, сборки элементарных структурных единиц или путем их деления. Различают физиологическую и репаративную регенерацию. Физиологическая регенерация - восстановление органов, тканей, клеток или внутриклеточных структур после разрушения их в процессе жизнедеятельности организма. Репаративная регенерация – восстановление структур после травмы или действия других повреждающих факторов. При регенерации происходят такие процессы, как детерминация, дифференцировка, рост, интеграция и др., сходные с процессами, имеющими место в эмбриональном развитии. Репаративной называют регенерацию, происходящую после повреждения или утраты какой-либо части тела. Выделяют типичную и атипичную репаративную регенерацию. При типичной регенерации утраченная часть замещается путем развития точно такой же части. Причиной утраты может быть внешнее воздействие (например, ампутация), или же животное намеренно отрывает часть своего тела (автотомия), как ящерица, обламывающая часть своего хвоста, спасаясь от врага. При атипичной регенерации утраченная часть замещается структурой, отличающейся от первоначальной количественно или качественно. У регенерировавшей конечности головастика число пальцев может оказаться меньше исходного, а у креветки вместо ампутированного глаза может вырасти антенна. нутриклеточная форма регенерации является универсальной, так как она свойственна всем органам и тканям без исключения. Однако структурно-функциональная специализация органов и тканей в фило- и онтогенезе «отобрала» для одних преимущественно клеточную форму, для других — преимущественно или исключительно внутриклеточную, для третьих — в равной мере обе формы регенерации. К органам и тканям, в которых преобладает клеточная форма регенерации, относятся кости, эпителий кожи, слизистые оболочки, кроветворная и рыхлая соединительная ткань и т. д. Клеточная и внутриклеточная формы регенерации наблюдаются в железистых органах (печень, почка, поджелудочная железа, эндокринная система), легких, гладких мышцах, вегетативной нервной системе. К органам и тканям, где преобладает внутриклеточная форма регенерации, относятся миокард и скелетные мышцы, в центральной нервной системе эта форма регенерации становится единственной формой восстановления структуры. Преобладание той или иной формы регенерации в определенных органах и тканях определяется их функциональным назначением, структурно-функциональной специализацией. Физиологическая регенерацияпредставляет собой процесс обновления функционирующих структур организма. Поддерживается структурный гомеостаз, обеспечивается возможность постоянного выполнения органами их функций. Является проявлением свойства жизни, как самообновление(обновление эпидермиса кожи, эпителия слизистой кишечника). Значение Р. для организма определяется тем, что на основе клеточного и внутриклеточного обновления органов обеспечивается широкий диапазон приспособительных колебаний и функциональной активности в меняющихся условиях среды, а также восстановление и компенсация функций, нарушенных в результате действия различных патогенных факте. Физиологическая и репаративная Р. является структурной основой всего разнообразия проявлений жизнедеятельности организма в норме и патологии. Билет №3. 1.Миндалины. Строение и функциональное значение. В отличии от лимфоузлов и селезенки, относящихся к так называемым лимфоретикулярным органам иммунной системы, миндалины называют лимфоэпителиальными органами. Так как в них осуществляются тесное взаимодействие эпителия и лимфоцитов. Миндалины расположены на границе ротовой полости и пищевода. Различают парные (небные) и одиночные (глоточная и язычная) миндалины. Кроме того, скопление лимфоидной ткани имеются в области слуховых (евстахиевых) труб (трубные миндалины) и в желудочке гортани (гортанные миндалины). Все эти образования формируют лимфоэпителиальное кольцо Пирогова-Вальдейера, окружающее вход в дыхательный и пищеварительный тракт. Функции миндалин:
Небные миндалины представлены двумя овальными телами. Каждая небная миндалина состоит из нескольких складок слизистой оболочки. Эпителий слизистой оболочки многослойный плоский неороговевающий образует 10—20 углублений в собственную пластинку слизистой, называемых криптами или лакунами. Лакуны имеют большую глубину и сильно ветвятся. Эпителий миндалин, особенно выстилающий крипты, сильно инфильтрирован лимфоцитами, макрофагами, иногда и плазмоцитами, а также содержит антигенпредставляющие клетки Лангерганса. В собственной пластике слизистой оболочки находятся лимфоидные узелки, межузелковая и надузелковая диффузная лимфоидная ткань. Лимфоидные узелки состоят из крупного центра размножения (место бласттрансформации В-лимфоцитов) и мантийной зоны (короны, содержащей В-лимфоциты памяти. В фолликулах располагаются макрофаги и фолликулярные дендритные клетки, выполняющие антигенпредставляющие функции. Межузелковые зоны — место бласттрансформации Т-лимфоцитов и созревания (Т-зоны). Здесь находятся посткапиллярные венулы с высоким эндотелием для миграции лимфоцитов. Плазмоциты, которые образуются в В-зонах, продуцируют в основном иммуноглобулин класса А, но могут синтезировать и иммуноглобулины других классов. Надузелковая соединительная ткань собственной пластинки содержит большое количество диффузно расположенных лимфоцитов, плазмоцитов и макрофагов. Эпителий в области крипт инфильтрирован лимфоцитами и зернистыми лейкоцитами. Снаружи миндалина покрыта капсулой, являющейся по сути часть подслизистой оболочки. В подслизистой оболочке залегают концевые отделы слизистых малых слюнных желез. Выводные протоки этих желез открываются на поверхности эпителия между криптами. Снаружи от капсулы и подслизистой оболочки лежат мышцы глотки. |