Главная страница

МЯДЕЛЕЦ ОБЩ.ГИСТ.. Литература для медицинских вузов все факультеты о. Д. Мяделец основы цитологии, эмбриологии и общей гистологии


Скачать 4.75 Mb.
НазваниеЛитература для медицинских вузов все факультеты о. Д. Мяделец основы цитологии, эмбриологии и общей гистологии
АнкорМЯДЕЛЕЦ ОБЩ.ГИСТ..doc
Дата03.02.2017
Размер4.75 Mb.
Формат файлаdoc
Имя файлаМЯДЕЛЕЦ ОБЩ.ГИСТ..doc
ТипЛитература
#2029
страница17 из 20
1   ...   12   13   14   15   16   17   18   19   20

II стадия миогистогенеза — миосимпластическая. В эту стадию миоблас ты располагаются в виде цепочек и сливаются друг с другом. Образуются миосимпласты. В их цитоплазме в результате сборки из синтезированных сократимых белков появляются миофибриллы, которые лежат на перифе­рии. Центральное положение занимают ядра. После слияния миобластов в миосимпласты деление ядер не происходит, увеличение длины миосимн ластов идет за счет присоединения новых миобластов, а толщины — за счет синтеза сократительного аппарата.

III стадия — стадия миотубул, или мышечных трубочек. В эту стадию в симпластах увеличивается число миофибрилл, которые еще лежат на периферии волокна, а ядра располагаются в центре. Число миотубул мо­жет увеличиваться за счет их продольного расщепления. С миотубулами сливаются все новые миосателлитоциты, и длина их увеличивается.

IV стадия стадия зрелого мышечного волокна. В эту стадию объем миофибрилл увеличивается до такой степени, что они занимают основ­ную массу волокна, смещаясь в центр и сдвигая ядра на периферию Сильно развивается гладкий эпдоплазматический ретикулум (СПР), уве­личиваются в размерах митохондрии, а пластинчатый комплекс, хорошо развитый в миобластах и миосимпластах, значительно редуцируется.

СТРОЕНИЕ МЫШЕЧНОГО ВОЛОКНА. Мышечные волокна (рис. 12.6) являются структурно-функциональным элементом скелетной мышеч­ной ткани. Имеют длину до 20—30 см, толщину 100 мкм. Состоят из двух частей: 1) симпластической; 2) миосателлитоцитов. Симпластическая часть (симпласт) снаружи покрыта сарколеммой и содержит множество (до не­скольких тысяч) ядер. Сарколемма состоит из толстой базальной мембра­ны и плазмолеммы мышечного волокна. Между базальной мембраной и плазмолеммой в отдельных участках имеются углубления (полости), в ко­торых лежат миосателлитоциты. При световой микроскопии эти клетки неотличимы от клеток соединительной ткани. При электронной микроско­пии видно, что они окружены своей плазмолеммой, имеют слабо развитые органеллы. Миосателлитоциты — камбий скелетной мышечной ткани. За счет их идет репарация мышечного волокна. Протоплазму волокна называют саркоплазмой. В ней находится боль­шое количество органелл общего значения (за исключением центриолей): митохондрий (саркосомы), лизосом. Комплекс Гольджи развит относи­тельно слабо. Развита гладкая ЭПС, которая называется саркоплазмати-ческим ретикулумом (СПР), а гранулярная ЭПС, напротив, слабо разви­та. Имеются включения гликогена и липидов, используемые для получе­ния энергии, а также пигментные включения миоглобина. Миоглобин яв­ляется железосодержащим пигментом, аналогичным гемоглобину. Он способен связывать кислород, что способствует процессам окислительно­го фосфорилирования и образования АТФ. Особенно в больших концен­трациях миоглобин содержится в красных мышечных волокнах, обеспе­чивая их цвет (см. ниже).

В отдельных участках плазмолемма мышечного волокна отдает внутрь саркоплазмы впячивания в виде трубочек, которые проходят пер­пендикулярно волокну через всю его толщину. Они называются Т-трубоч-ками (от лат. transversus — поперечный). Т-трубочки окружают каждую миофибриллу, чему способствует их интенсивное ветвление и соединение с соседними трубочками. К Т-трубочкам с обеих сторон подходят продоль­ные цистерны СПР (L- цистерны, от лат. longitudinale — продольный). По­дойдя к Т-трубочкам, L-цистерны сливаются и образуют поперечные тер­минальные цистерны (Т-цистерны). Вместе с Т-трубочками терминальные цистерны образуют триады — особую мембранную систему, играющую важную роль в инициации мышечного сокращения (рис. 12.6 б). Между мембранами Т-трубочек и терминальных цистерн имеются специализиро­ванные контакты, через которые возможен транспорт кальция. Саркоплаз-матический ретикулум при помощи ферментов (кальций-транспортирую-щие АТФазы) за счет активного транспорта накапливает ионы Са2.




Основную часть волокна занимают органеллы специального значения — миофибриллы. В одном волокне их может насчитываться до 2000. Диа­метр миофибрилл может доходить до 2 мкм, длина равна длине мышечно­го волокна. В каждой миофибрилле при стандартной световой микроско­пии обнаруживается исчерченеюсть — светлые и темные диски (рис. 12.7 а). В поляризованном микроскопе темные диски имеют двойное лучепре­ломление и поэтому называются анизотропными, или А-дисками. Светлые диски не имеют двойного лучепреломления и называются изотропными, или I-дисками. Посередине 1-диска проходит полоска, которая называется Z-линией (телофрагма). Z-линия имеет зигзагообразный ход на продоль­ном сечении миофибриллы, а на поперечном разрезе представляет собой четырехугольную решетку, в узлах которой закрепляются актиновые фи-ламенты. В центре А-диска находится светлая полоска Н, а посередине ее проходит темная линия М, или мезофрагма. Участок миофибриллы, лежащий между двумя соседними Z-линиями, называется саркомером. Саркомер - структурно-функциональная единица миофибриллы. В его состав последовательно входят: Z-линия, 1/2 диска I, диск А, 1/2 диска I, вторая Z-линия. Каждый саркомер состоит из тонких актиновых и толстых миозиновых филаментов. Миофиламенты образова­ны сократительными белками (рис. 12.7, 12.8). В состав актиновых фила­ментов входит белок актин, а также белки тропонин и тропомиозин (рис. 12.8 I). Молекулы актина имеют гранулярное строение (G-актин) и, соеди­няясь вместе, образуют длинные цепи (фибриллярный, F-актин). В актино­вых филамеитах таких цепей две, они образуют двойную спираль. В бо- роздках между спиральными цепями актина лежат молекулы тропомиози­на, также образуя две спирали. К молекулам тропомиозина на равных рас­стояниях друг от друга прикрепляются молекулы тропонина. Тропонино-вый комплекс состоит из трех глобулярных субъединиц: Т, I, С (сокращен­но они обозначаются TnT, Tnl, TnC). ТпТ осуществляет прикрепление тро-понинового комплекса к троиомиозину. ТпС отвечает за связывание с ионами Са2+. Tnl препятствует взаимодействию миозиновых головок с ак­тином. Тропониновый комплекс прикреплен к молекулам тропомиозина с интервалами 40 нм. Диаметр тонких филаментов 5 им (рис. 12.8 II).



Толстые филаменты имеют диаметр 12 нм и содержат белок миозин. Каждая молекула миозина состоит из двух частей: головки и хвоста и мо­жет сгибаться в двух местах (шарнирные участки). Головка миозина имеет .АТФ-азную активность и способна расщеплять АТФ с образованием энер­гии, идущей как на сокращение, так и на осуществление расслабления. Молекулы миозина соединяются в пучки и формируют толстую филамен-ту, напоминающую ламповую щетку: головки миозина в ней выступают за пределы основного стержня. Головки миозина "торчат" из стержня только в периферических отделах миозиновых филаментов. В централь­ной их части они отсутствуют (так называемый гладкий, "оголенный" участок). В этом миозиновые филаменты скелетных мыщц отличаютсят от таковых в гладких миоци-тах. Последние содержат го­ловки миозина на всем про­тяжении.




Кроме миозина, составля­ющего основную массу тол­стых филаментов, в их состав входят белки титин, небулин, миомезин и С-белок. Молеку­ла титина имеет огромные размеры и в виде пружины прикрепляет концы толстых нитей к Z-линиям. Эти моле­кулы образуют внутри сарко-мера своеобразную решетча­тую структуру, которая под­держивает закономерное рас­положение толстых и тонких филаментов и препятствует перерастяжению миофибрил-лы. Небулин связывает тон­кие и толстые филаменты. Миомезин и белок С связыва­ют толстые филаменты в об­ласти М-линии.

На электронных фотогра­фиях (рис. 12.7 я, 12.9) голов­ки миозина видны в состоя­нии сокращения в виде поперечных мостиков. В составе саркомера толстые филаменты лежат только в диске А. Тонкие филаменты лежат в диске 1, но концами частично заходят в диск А между миозиновыми филамента-ми. Та часть диска А, которая содержит и актиновые, и миозиновые фила­менты, выглядит более темной, а та его часть, которая содержит только миозиновые филаменты, светлее. Это Н-полоска. Линия М в центре Н-по-лоски — место соединения всех миозиновых филаментов друг с другом. В их скреплении участвуют миомезин и С-белок.

На поперечном срезе миофибриллы можно видеть, что вокруг одной толстой филаменты в виде шестиугольника, формируя его углы, лежат шесть тонких филамент. Тонкие филаменты неподвижно прикреплены к Z-линиям.






В состав их входят белки а-актинин, десмин, виментин.

МЕХАНИЗМ МЫШЕЧНОГО СОКРАЩЕНИЯ. Общепринятой тео­рией является модель мышечного сокращения X. Хаксли, или теория скольжения нитей (1954). Суть ее в следующем (рис. 12.10, 12.11). Не­рвный импульс проходит по нервному волокну и передается на постси-наптическую мембрану нервно-мышечного синапса, которой является плазмолемма мышечного волокна. Затем возбуждение идет по Т-трубоч-кам внутрь мышечного волокна и передается на лежащие рядом терми­нальные цистерны. Из цистерны СПР после их возбуждения выходят ионы Са2+, т.к. мембраны СПР после деполяризации становятся для них проницаемыми. В отличие от гладких миоцитов, в которых кальций акти­вирует миозиновые филаменты, в скелетной мышечной ткани основной точкой приложения кальция являются тонкие филаменты. На них каль­ций открывает активные центры для связывания головок миозина: ионы Са2+ мигрируют к молекулам тропонина (ТпС) и связываются с ними (рис. 12.8).

Тропонин Tnl в состоянии расслабления закрывает активные центры на актиновых филаментах. При связывании Са2+ изменяется конфигура­ция тропонина, и эти актиновые центры «открываются». При этом голов­ки миозина, обладающие адгезивностью, приобретают возможность взаи­модействовать с молекулами актина. Они изгибаются в шарнирных обла­стях и присоединяются к молекулам актина, совершая при этом своеобраз­ные гребковые движения и создавая тянущее усилие. Далее они отсоединя­ются от активных участков и вновь присоединяются, но в новом месте. Акт присоединения—отсоединения идет со скоростью 500 раз в секунду. Это вызывает скольжение толстых филамент вдоль тонких. С активными центрами актиновых филамент взаимодействие головок миозина осуще­ствляется поочередно.




Для возвращения головки миозина в исходное положение необходима энергия АТФ, которая распадается благодаря АТФ-азной активности мио­зина. После наступления смерти выработка АТФ резко снижается и голов­ки миозина не могут отсоединиться от актиновых филамент. Это прояв­ляется в сокращении мышц (трупное окоченение).



Его наступление зави­сит от длительности агонии, температуры внешней среды и других усло­вий, но относительно постоянно для каждого комплекса условий. Разре­шение трупного окоченения также происходит в определенные временные интервалы в результате процессов аутолиза. Трупное окоченение может быть насильственно разрушено. Все эти обстоятельства используются в судебно-медицинской практике для установления времени наступления смерти и решения ряда других вопросов.

При отсутствии нервных импульсов Са2+ вновь откачивается в СПР, и активные центры на актиновых филаментах закрываются тропонином. В электронном микроскопе сокращение проявляется сближением Z-линий, уменьшением или исчезновением размеров I-диска, полоски М в А-диске, а также появлением поперечных мостиков из головок мио­зина (см. рис. 12.6). Количество поперечных мостиков нарастает по ходу развития сократительного акта, обеспечивая нарастание силы сокращения. Последующее расслабление сопровождается обратным процессом. Удлинение мышц, находящихся в антагонистических отношениях с сокращающимися в данный момент мышцами происходит пассивно в результате отсутствия вза­имодействия между миофиламентами и пассивного их скольжения друг по отношению к другу.

При помощи особых белков (дистрофии, винкулин, талин, спект-рин и др.) и адгезивных молекул (интегрины, фибронектин и др.) мио-фибриллы связаны с базальной мембраной и через нее — с компонентами межклеточного вещества эндомизия.

РЕГЕНЕРАЦИЯ СКЕЛЕТНОЙ МЫШЕЧНОЙ ТКАНИ

Физиологическая регенерация. В нормальных условиях функцио­нирования происходит старение и разрушение частей мышечных волокон. Восстановление происходит как за счет внутриклеточной, так и клеточной регенерации. Внутриклеточная регенерация призвана восстанавливать старе­ющие органеллы и другие части мышечных волокон. Клеточная регенера­ция включает размножение миосателлитоцитов, превращение их в миобла-сты с последующим включением последних в состав предсуществующих мы­шечных волокон и дифференцировкой во фрагмент мышечного волокна.

Репаративная регенерация. Также осуществляется на внутриклеточном и клеточном уровне благодаря миосателлитоцитам. После повреждения мышечных волокон на ранних стадиях регенераторного процесса в месте повреждения развивается воспалительная реакция. Одновременно проис­ходит разрушение части мышечных волокон на некотором удалении от ме­ста повреждения. Клетки воспалительного инфильтрата (нейтрофилы и макрофаги) интенсивно фагоцитируют участки мертвых тканей, микроор­ганизмы, расчищая зону регенерации. При сильной активации фагоцитов (наблюдается при разможжении тканей с их омертвением) продукты секреции фагоцитов MOi-ут вызывать дополнительное разрушение мышечных волокон. Вещества, образующиеся при разрушении тканей (т.наз. некрогормоны) сти­мулируют регенерацию. При этом регенерации мышечной ткани предшествует регенерация кровеносных сосудов (реваскуляризация). Регенерация мы­шечных волокон происходит при тесном сочетании двух процессов: 1) фор­мирования почек роста (внутриклеточная регенерация); 2) деления и дифференцировки миосателлитоцитов (клеточная регенерация).

В первом случае на поврежденных отрезках мышечных волокон фор­мируются мышечные почки роста: наплывы саркоплазмы в виде колбооб- разных утолщений (рис. 12.12 а). За счет внутриклеточной регенерации (об­разование в миофибриллах новых саркомеров, новых органелл и т.д.) почки

растут навстречу друг другу.

Во втором случае происходит активация миосателлитоцитов вблизи зоны травмы мышечных волокон. Усиленно размножаясь и дифференцируясь, они далее обеспечивают развитие стадий, похожих на стадии миогенеза:

1. Миобластическая Стадия. Из миосателлитов образуются миоблас­ты, которые размножаются митозом (рис. 12.12 б).

2. Миосимпластическая стадия. Миобласты сливаются друг с другом, образуя миосимпласты с миофибриллами в периферических и ядрами в центральных участках.

3. Стадия миотубул (рис. 12.12 в).

4. Стадия зрелых мышечных волокон (рис. 12.12 г).

Важно подчеркнуть, что миобласты могут не только сливаться друг с другом и формировать мышечные трубочки, но также включаться в мышеч­ные почки, усиливая и ускоряя их рост навегречу друг другу.






Новообразованные участки мышечных волокон тоньше предсуществую-щих, часто не до конца дифференцированы (содержат ядра, лежащие в цент­ре, как в миотубулах). Правильная дозированная нагрузка на поврежденную мышцу способствует превращению их в полноценные мышечные волокна.

УСЛОВИЯ ХОРОШЦЙ РЕГЕНЕРАЦИИ СКЕЛЕТНОЙ МЫШЕЧНОЙ ТКАНИ

Полноценная регенерация поперечнополосатой мышечной ткани чаще происходит при небольших повреждениях. В последнее время бла­годаря методам микрохирургии, позволяющим восстановить сосуды и не­рвы, удается добиться удовлетворительной регенерации мышц и при массивных повреждениях, что позволяет реплантировать ампутированные при травмах конечности. Условиями хорошей регенерации мышечной ткани являются:

1. Максимальное сближение краев поврежденного мышечного волокна путем их сшивания.

2. Тщательное удаление из зоны регенерации мертвых тканей и пре­пятствие развитию грубой рубцовой соединительной ткани.

3. Тщательное восстановление непрерывности кровеносных сосудов и нервов. Достигается путем их сшивания под операционным микроскопом.

4. Сохранение целостности базальной мембраны мышечных волокон также является важным условием хорошей регенерации мышечных воло­кон. Она препятствует проникновению в поврежденное мышечное волокно фибробластов и разрастанию соединительной ткани. Сохраненная базаль-ная мембрана способствует ориентации мышечных трубочек, обеспечивает нормальное микроокружение.

РОСТ И КОМПЕНСАТОРНО-ПРИСПОСОБИТЕЛЬНАЯ ПЕРЕ­СТРОЙКА СКЕЛЕТНОЙ МЫШЕЧНОЙ ТКАНИ. В онтогенезе происхо­дят существенные изменения со стороны мышечной ткани, связанные с ее ростом и адаптацией к изменяющимся условиям функционирования.

Рост мышечной ткани и скелетных мышц происходит за счет двух процессов: 1) утолщения и 2) удлинения миофибрилл и всего мышечного волокна. Утолщение мышечного волокна осуществляется как за счет обра­зования новых миофибрилл, так и за счет их утолщения путем добавле­ния вновь синтезированных миофиламентов к прсдсуществующим мио-фибриллам (гипертрофия миофибрилл). Возможно также увеличение ко­личества миофибрилл путем расщепления предварительно утолщенных предсуществующих миофибрилл, а затем их гипертрофии. Параллельно в волокне идет увеличение содержания саркоплазмы и органелл в ней.

Удлинение миофибрилл и мышечного волокна в целом происходит дву­мя путями: 1) путем пристройки к концам миофибрилл новых сар-комеров и 2) в результате слияния с мышечным волокном все но­вых и новых миосателлитоцитов. В основе удлинения мышечного во­локна лежит также образование все новых компонентов саркоплазмы.

Гипертрофия скелетной мышечной ткани и скелетных мышц — это своеобразная адаптация мышечной ткани, которая происходит при дли­тельном возрастании мышечной нагрузки и характеризуется преобладани­ем анаболических процессов над катаболическими. В основе гипертрофии лежит увеличение числа и размеров (диаметра) миофибрилл, а также компонентов саркоплазмы. При тренировках на физическую выносливость происходит преимущественное увеличение объема саркоплазмы и в осо­бенности митохондрий, а при скоростно-силовых тренировках преимуще­ственное развитие получает миофибриллярный аппарат.

Атрофия скелетной мышечной ткани и мышц наблюдается при гипо­динамии, денервации и голодании. В некоторых случаях (голодание, гипо­динамия) атрофия является своеобразной адаптацией к экстремальным ус­ловиям существования. Врожденная атрофия (или правильнее, дистро­фия) скелетной мышечной ткани наблюдается при генетических наруше­ниях. Характеризуется генетическим дефектом синтеза белков дистрофи-нов, сопровождающимся снижением их содержания. Эти белки связывают миофибриллы с сарколеммой и межклеточным веществом эндомизия. Та­кая связь обеспечивает нормальную биологию мышечных волокон. Сниже­ние содержания дистрофинов проявляется разрушением мышечных воло­кон и замещением их жировой и волокнистой соединительной тканями.

Стимуляция регенерации и гипертрофии скелетной мышечной ткани. Ускорения и полноценной регенерации скелетной мышечной ткани можно добиться следующими способами: 1) путем назначения анаболических гор­монов (мужских половых гормонов или их синтетических аналогов, инсу­лина, гормона роста); 2) путем назначения витаминов. Особое значение имеют витамины, непосредственно участвующие в синтезе белков: витамин В,2, фолиевая кислота, оротовая кислота (калия оротат). 3) В эксперименте показано резкое улучшение регенерации скелетной мышцы при введении в зону повреждения измельченной мышцы ("мышечного фарша"). 4) В пос­леднее время для стимуляции регенерации поврежденной скелетной мыш­цы стали применять имплантацию культуры миосателлитоцитов. Их уда­ется выделить из мышечной ткани и выращивать культурально. 5) Боль­шое значение имеют досточно ранние дозированные функциональные на­грузки на регенерирующую мышечную ткань.

СТРОЕНИЕ СКЕЛЕТНОЙ МЫШЦЫ КАК ОРГАНА. Мышца состо­ит из множества мышечных волокон, связанных в единое целое соедини­тельной тканью. Количество мышечных волокон в мышцах может сильно варьировать — от нескольких сот тысяч до нескольких миллионов. Между мышечными волокнами лежит РВНСТ, называемая эндомизием. Соеди-нптельпоткапные волокна зндо-мнзия тесно связаны с баналь­ной мембраной мышечного во­локна. Несколько мышечных волокон (10—100) окружены более толстыми прослойками РВНСТ — перимизием. Пери-мизий образован сильно развет­влен н ы м и прослой ка ми РВНСТ, отходящими от эпи-мизия. В эндомизии и перими-зии находятся сосуды и нервы, питающие мышцу (рис. 12.13). Снаружи мышца покрыта эпи-мизием — тонким прочным футляром из плотной волокнистой соединительной ткани. С концов к мыш­це прикрепляются сухожилия. При этом сарколемма на концах мышечных волокон образует многочисленные интердигитацпи, в которые заходят и тес­но вплетаются в базальную мембрану коллагеновые волокна сухожилия.

ТИПЫ МЫШЕЧНЫХ ВОЛОКОН. Выделяют три основных типа мышечных волокон (рис. 12.14).

I тип красные мышечные волокна. Имеют небольшой диаметр. В них преобладает саркоплазма, в которой много белка миоглобина, обеспе­чивающего красный цвет волокон. Миофибрилл меньше, чем саркоплазмы, они относительно тонкие. Это медленные (тонические) мышечные во­локна. Они содержат много митохондрий, имеют высокую активность окислительно-восстановительных ферментов, запасы питательных веществ (включения липидов) и могут сокращаться в течение длительного времени, но медленно, развивая не очень большую силу сокращений. Красные мы­шечные волокна содержат много миосателлитоцитов и усиленно кровоснаб-жаются. Из них построены мышцы, выполняющие длительные тонические нагрузки, например, у птиц, совершающих длительные перелеты, это груд­ные мышцы.

НВ тип белые мышечные волокна. Характеризуются большим диамет­ром, сильным развитием миофибрилл и меньшим развитием саркоплазмы, в которой содержится меньше, чем в красных волокнах, питательных запа­сов и митохондрий. В волокнах низкая активность окислительных фер­ментов, а активность гликолитических ферментов (лактатдегидрогеназы и др.) — напротив, высокая. Содержат большие запасы гликогена. Это быст­рые, тетанические, способные вызывать сокращения большой силы, но бы­стро утомляемые мышечные волокна. Их кровоснабжение относительно слабое. Из этих мышечных волокон построены мышцы, выполняющие бы­стрые движения и сильные сокращения (мышцы конечностей). Белые мы­шечные волокна более быстро и выраженно подвергаются гипертрофии, чем красные мышечные волокна.




НА тип. Промежуточный тип мышечных волокон, занимающий и в структурном, и в функциональном отношении среднее положение между первыми двумя. В качестве источника энергии используют как липиды, так и гликоген, в них в одинаковой степени протекают и окислительные, и гликолитические процессы. Способны сокращаться быстро, с большой силой, и вместе с тем устойчивы к утомлению.

У каждого человека свое индивидуальное, генетически обусловленное соотношение трех типов мышечных волокон, этим определяются разные физические и спортивные качества и способности.




СЕРДЕЧНАЯ МЫШЕЧНАЯ ТКАНЬ

РАЗВИТИЕ. Источником развития сердечной мьшючной ткани явля­ется миоэпикардиальная пластинка — часть висцерального сплаихпотома в шейном отделе зародыша. Ее клетки превращаются в миобласты, которые активно делятся митозом и дифференцируются. В цитоплазме миобластов синтезируются миофиламенты, формирующие миофибриллы. Вначале миофибриллы не имеют исчерченности и определенной ориентации в цитоплазме. В процессе дальнейшей дифференцировки принимают про­дольную ориентацию и тонкими миофиламентами прикрепляются к форми­рующимся уплотнениям сарколеммы (Z-вещество).

В результате все возрастающей упорядоченности миофиламентов мио­фибриллы приобретают поперечную исчерчениость. Образуются кардиоми- оциты. В их цитоплазме нарастает содержание органелл: митохондрий, гра нулярной ЭПС, свободных рибосом. В процессе дифференцировки кардио миоциты не сразу теряют способность к делению и продолжают размно­жаться. В некоторых клетках может отсутствовать цитотомия, что ведет к появлению двуядерных кардиомиоцитов. Развивающиеся кардиомиоциты имеют строго определенную пространственную ориентацию, выстраиваясь в виде цепочек и образуя друг с другом межклеточные контакты — вставоч­ные диски. В результате дивергентной дифференцировки кардиомиоциты превращаются в клетки трех типов: 1) рабочие, или типичные, сократи­тельные; 2) проводящие, или атипичные; 3) секреторные (эндокрин­ные). В результате терминальной дифференцировки кардиомиоциты к мо­менту рождения или в первые месяцы постнаталыюго онтогенеза теряют способность к делению. В зрелой сердечной мышечной ткани камбиальные клетки отсутствуют.

СТРОЕНИЕ. Сердечная мышечная ткань образована клетками карди-омиоцитами. Кардиомиоциты являются единственным тканевым элемен­том сердечной мышечной ткани. Они соединяются друг с другом при по­мощи вставочных дисков и образуют функциональные мышечные волокна, или функциональный симпласт, не являющийся симпластом в морфологи­ческом понятии. Функциональные волокна разветвляются и анастомози-руют боковыми поверхностями, в результате чего образуется сложная трехмерная сеть (рис. 12.15).

Кардиомиоциты имеют вытянутую прямоугольную слабоотростчатую форму. Они состоят из ядра и цитоплазмы. Многие клетки (более полови­ны у взрослого индивидуума) являются двуядерными и полиплоидными. Степень полиплоидизации различна и отражает адаптивные возможности миокарда. Ядра крупные, светлые, находятся в центре кардиомиоцитов.

Цитоплазма (саркоплазма) кардиомиоцитов обладает выраженной ок-сифилией. В ней содержится большое количество органелл и включений. Периферическую часть саркоплазмы занимают расположенные продольно исчерченные миофибриллы, построенные так же, как в скелетной мышеч­ной ткани (рис. 12.16). В отличие от миофибрилл скелетной мышечной ткани, лежащих строго изолированно, в кардиомиоцитах миофибриллы нередко сливаются друг с другом с образованием единой структуры и со­держат сократимые белки, химически отличающиеся от сократимых бел­ков миофибрилл скелетных мышц.

СИР и Т-трубочки развиты слабее, чем в скелетной мышечной ткани, что связано с автоматией сердечной мышцы и меньшим влиянием не­рвной системы. В отличие от скелетной мышечной ткани СПР и Т-трубочки образуют не триады, а диады (к Т-трубочке прилежит одна цистерна СПР). Типичные терминальные цистерны отсутствуют. СПР менее интенсивно ак­кумулирует кальций. Снаружи кардиоциты покрыты сарколеммой, состоящей из плаз-молеммы кардиомпоцита и базаль-ной мембраны снаружи. Вазальная мембрана тесно связана с межкле­точным веществом, в нес вплетают­ся коллагеновые и эластические во­локна. Базальная мембрана отсут­ствует в местах вставочных дисков. Со вставочными дисками свя­заны компоненты цитоскелета. Че­рез интегрины цитолеммы они также связаны с межклеточным ве­ществом. Вставочные диски — это место контактов двух кардио­миоцитов, комплексы межклеточ­ных контактов. Они обеспечивают как механическую, так и химичес­кую, функциональную коммуни­кацию кардиомиоцитов. В свето­вом микроскопе имеют вид тем­ных поперечных полосок (рис. 12.14 б). В электронном микроско­пе вставочные диски имеют зигза­гообразный, ступеньчатый вид или вид зубчатой линии. В них можно выделить горизонтальные и верти­кальные участки и три зоны (рис. 12.1,12.15 6).






1. Зоны десмосом и поло­сок слипания. Находятся на вер­тикальных (поперечных) участках дисков. Обеспечивают механичес­кое соединение кардиомиоцитов.

2. Зоны нексусов (щеле­вых контактов) — места переда­чи возбуждения с одной клетки на другую, обеспечивают химическую коммуникацию кардиомиоцитов. Обнаруживаются на продольных участках вставочных дисков. 3. Зоны прикрепления миофибрилл. Находятся на поперечных участках вставоч­ных дисков. Служат местами прикрепления актиновых фила-ментов к сарколемме кардиоми-оцита. Это прикрепление про­исходит к Z-полоскам, обнару­живаемым на внутренней по­верхности сарколеммы и анало­гичным Z-линиям. В области вставочных дисков обнаружива­ются в большом количестве кадгерины (адгезивные моле­кулы, осуществляющие каль-цийзависимую адгезию кардио-миоцитов друг с другом).

Типы кардиомиоцитов. Кардиомиоциты имеют разные свойства в разных участках серд­ца. Так, в предсердиях они мо­гут делиться митозом, а в желу­дочках никогда не делятся. Раз­личают три тина кардиомиоци­тов, существенно отличающихся друг от друга гак строением, так и функциями: рабочие, сек­реторные, проводящие.

1. Рабочие кардиомио­циты имеют структуру, описан­ную выше.

2. Среди предсердных миоцитов есть секреторные кардиомиоциты, которые вырабатывают натрийуретический фактор (НУФ), усиливаю­щий секрецию натрия почками. Кроме этого, НУФ расслабляет гладкие ми-оциты стенки артерий и подавляет секрецию гормонов, вызывающих гипер-тензию (альдостерона и вазопрессина). Все это ведет к увеличению диуре­за и просвета артерий, снижению объема циркулирующей жидкости и в результате — к снижению артериального давления. Секреторные кардио­миоциты локализуются в основном в правом предсердии. Следует отметить, что в эмбриогенезе способностью к синтезу обладают все кардиомиоциты, но в процессе дифференцировки кардиомиоциты желудочков обратимо те-ряют эту способность, которая может восстанавливаться здесь при перенап­ряжении сердечной мышцы.




3. Значительно отличаются от рабочих кардиомиоцитов проводящие (атипичные) кардиомиоциты. Образуют проводящую систему сердца (см. "сердечно-сосудистую систему"). Они в два раза больше рабочих кардио­миоцитов. В этих клетках содержится мало миофибрилл, увеличен объем саркоплазмы, в которой выявляется значительное количество гликогена. Благодаря содержанию последнего цитоплазма атипичных кардиомиоци­тов плохо воспринимает окраску. В клетках содержится много лизосом и отсутствуют Т-трубочки. Функцией атипичных кардиомиоцитов является генерация электрических импульсов и передача их на рабочие клетки. Не­смотря на автоматизм, работа сердечной мышечной ткани строго регули­руется вегетативной нервной системой. Симпатическая нервная система учащает и усиливает, парасимпатическая — урежает и ослабляет сердеч­ные сокращения.

РЕГЕНЕРАЦИЯ СЕРДЕЧНОЙ МЫШЕЧНОЙ ТКАНИ. Физиологи­ческая регенерация. Реализуется на внутриклеточном уровне и протекает с высокой интенсивностью и скоростью, поскольку сердечная мышца несет огромную нагрузку. Еще более она возрастает при тяжелой физической работе и в патологических условиях (гипертоническая болезнь и др.). При этом происходит постоянное изнашивание компонентов цитоплазмы кар­диомиоцитов и замещение их вновь образованными. При повышенной на­грузке на сердце происходит гипертрофия (увеличение размеров) и гиперп­лазия (увеличение количества) органелл, в том числе и миофибрилл с на­растанием в последних количества саркомеров. В молодом возрасте отме­чаются также полиплоидизация кардиомиоцитов и появление двуядерных клеток. Рабочая гипертрофия миокарда характеризуется адекватным адап­тивным разрастанием его сосудистого русла. При патологиии (например, пороки сердца, также вызывающие гипертрофию кардиомиоцитов) этого не происходит, и через некоторое время из-за нарушения питания происхо­дит гибель части кардиомиоцитов с замещением их рубцовой тканью (кардиосклероз).

Репаративная регенерация. Происходит при ранениях сердечной мышцы, инфарктах миокарда и при других ситуациях. Поскольку в сердеч­ной мышечной ткани пет камбиальных клеток, то при повреждении миокар­да желудочков регенераторные и адаптивные процессы идут на внутрикле­точном уровне в соседних кардиомиоцитах: они увеличиваются в размерах и берут на себя функцию погибших клеток. На месте погибших кардиомио­цитов образуется соединительнотканный рубец. В последнее время уста­новлено, что некроз кардиомиоцитов при инфаркте миокарда захватывает только кардиомиоциты сравнительно небольшого участка зоны инфаркта и близлежащей зоны. Более значительное количество кардиомиоцитов, окру­жающих зону инфаркта, погибает путем апрптоза, и этот процесс является ведущим в гибели клеток сердечной мышцы. Поэтому лечение инфаркта ми­окарда в первую очередь должно быть направлено на подавление апоптоза кардиомиоцитов в первые сутки после наступления инфаркта.

При повреждении миокарда предсердий в небольшом объеме может осуществляться регенерация на клеточном уровне.

Стимуляция репаративной регенерации сердечной мышечной ткани. 1) Предотвращение апоптоза кардиомиоцитов назначением препаратов, улучшающих микроциркуляцию миокарда, снижающих свертывание кро­ви, ее вязкость и улучшающих реологические свойства крови. Успешная борьба с постинфарктным апоптозом кардиомиоцитов является важным условием дальнейшей успешной регенерации миокарда; 2) Назначение анаболических препаратов (витаминного комплекса, препаратов РНК и ДНК, АТФ и др.); 3) Раннее применение дозированных физических нагру­зок, комплекса упражнений лечебной физкультуры.

В последние годы в экспериментальных условиях для стимуляции ре­генерации сердечной мышечной ткани стали применять трансплантацию миосателлитоцитов скелетной мышечной ткани. Установлено, что введен­ные в миокард миосателлитоциты формируют скелетные мышечные во­локна, устанавливающие тесную не только структурную, но и функцио­нальную связь с кардиомиоцитами. Поскольку замещение дефекта мио­карда не инертной соединительной, а проявляющей сократительную ак­тивность скелетной мышечной тканью более выигрышно в функциональ­ном и даже в механическом отношении, то дальнейшая разработка этого метода может оказаться перспективной при лечении инфарктов миокарда у людей.

ВОЗРАСТНЫЕ ИЗМЕНЕНИЯ МЫШЕЧНЫХ ТКАНЕЙ

1. Гладкая мышечная ткань. В раннем постнатальном онтогенезе отме­чается дальнейшая дифференцировка миоцитов в составе оболочек полых органов. При этом наблюдается постепенное увеличение миоцитарных комплексов за счет нарастания как количества миоцитов, формирующих комплексы, так и размеров самих миоцитов. Благодаря этому происходит постепенное увеличение толщины слоев мышечной оболочки органов, дос­тигающее максимума к моменту полового созревания. При старении про­исходит постепенное уменьшение размеров миоцитарных комплексов, обусловленное усилением апоптотической гибели гладких миоцитов, пре­обладающей над их воспроизводством. Это ведет к уменьшению толщины слоев мышечной оболочки полых органов. В некоторых случаях может, на­против, происходить разрастание гладкой мышечной ткани (в предстатель-ной железе у мужчин, в мышечной оболочке матки у женщин, во внутрен­ней оболочке артерий при атеросклерозе).

2. Скелетная мышечная ткань. В раннем постнатальном периоде происходит окончательное созревание мышечных волокон, не завершившее­ся к моменту рождения. В дальнейшем идет постепенное уплотнение мы­шечных волокон в мышцах за счет увеличения поперечника волокон. В мо­лодом возрасте происходит увеличение объема мышечной ткани за счет воз­растания длины и толщины мышечных волокон. Этот процесс существен­но ускоряется в подростковом возрасте. При старении в скелетной мышеч­ной ткани наблюдаются явления частичной дегенерации и атрофии мы­шечных волокон, сопровождающееся разрастанием соединительной ткани. В волокнах нарушается закономерность расположения митохондрий, кото­рые могут гипертрофироваться с появлением гигантских форм либо деге­нерируют. Снижается объем саркоплазматической сети. В отдельных мио-фибриллах отмечаются потеря поперечной исчерченности, фрагментация в сочетании с дезорганизацией миофиламентов. В результате разрастания соединительной ткани существенно снижаются упругость и эластичность мышц. В силу всех отмеченных изменений мышцы становятся легко утом­ляемыми.

Сердечная мышечная ткань. У новорожденных детей кардиомиоциты мелкие, округлые, содержат меньше саркоплазмы и миофибрилл, чем у взрослых. Миофибриллы тонкие. В связи с этим миокард у первый год жизни бледен и менее исчерчен, чем у взрослого. После рождения толщи­на и масса миокарда быстро увеличиваются за счет увеличения размеров кардиомиоцитов. Их форма из округлой становится отростчатой к 4-му году. Увеличивается объем саркоплазмы и миофибрилл. Дефинитивного строения сердечная мышца достигает к половому созреванию При старе­нии происходят дистрофия и атрофия кардиомиоцитов. В кардиомиоци-тах уменьшается ядерно-цитоплазматическое отношение. Снижается плот­ность ядер. Дистрофически изменяются митохондрии. Уплотняются ба-зальная мембрана и сарколемма. Расширяются канальцы СПР. В кардио-миоцитах появляется пигмент старения липофусцин. Прогрессивно разра­стается соединительная ткань, вследствие этого и уменьшения удельного веса кардиомиоцитов сердечная мышца становится дряблой.

1   ...   12   13   14   15   16   17   18   19   20


написать администратору сайта