Общая гигиена. Литература для студентов фармацевтических вузов и фармацевтических факультетов медицинских вузов А. М. Болыиаков, И. М. Новикова
Скачать 0.96 Mb.
|
Солнечная радиация Солнечная радиация — единственный источник энергии, тепла и света на Земле. Солнце оказывает огромное многообразное влияние на процессы, происходящие в органическом и неорганическом мире. Благодаря солнечной радиации происходят нагревание поверхности земного шара, испарение воды, перемещение воздушных масс, изменение погоды. Она является основным фактором, обусловливающим климат местности. Под солнечной радиацией понимают испускаемый солнцем интегральный поток радиации, который представляет собой электромагнитное излучение. Основную часть солнечного спектра составляют лучи с чрезвычайно малыми длинами волн, которые измеряются в нанометрах (нм). В гигиеническом отношении особый интерес представляет оптическая часть солнечного спектра, которая разделяется на три диапазона: инфракрасные лучи с длиной волн от 2800 до 760 нм, видимая часть спектра — от 760 до 400 нм и ультрафиолетовая часть — от 400 до 280 нм. При прохождении через воздушную оболочку Земли в результате поглощения, отражения и рассеивания лучистая энергия теряет до 57 % первоначальной мощности. Интенсивность солнечной радиации во многом зависит от высоты стояния Солнца над горизонтом, угла падения лучей, прозрачности атмосферы. При этом в широком диапазоне изменяется и спектральный состав лучистой энергии. Так, если на границе атмосферы ультрафиолетовая часть солнечного спектра составляет 5 %, видимая — 52 % и инфракрасная — 43 %, то, достигая поверхности Земли, эти показатели соответственно равняются 1, 40 и 59 %. Величина солнечной радиации и ее спектральный состав подвержены значительным колебаниям в течение суток, месяцев и сезонов года. Наибольшая интенсивность солнечной радиации Таблица 3.1. Соотношение прямой и рассеянной солнечной радиации при различной высоте стояния
в мае—августе. Солнечная радиация возрастает с увеличением высоты местности над уровнем моря. Так, на высоте 1000 м она составляет около 292,7 • 104 Вт/м2, а на высоте 3000 м достигает 346,6 • 104 Вт/м2. С изменением высоты стояния Солнца над горизонтом меняется соотношение прямой и рассеянной солнечной радиации (табл. 3.1). Установлено, что солнечная радиация оказывает мощное биологическое действие: стимулирует физиологические процессы в организме, изменяет обмен веществ, общий тонус, улучшает самочувствие человека, повышает его работоспособность. Инфракрасная радиация. Составляет большую часть излучения Солнца и по биологической активности делится на длинноволновую (1500—2500 нм) и коротковолновую (760— 1500 нм). Биологическое действие инфракрасной радиации на организм в значительной степени зависит от длины волны и поглощающей способности кожи. Так, лучи с длиной волн от 1500 до 2500 нм поглощаются поверхностным слоем эпидермиса. Наибольшей проникающей способностью обладают коротковолновые лучи (длина волны менее 1000 нм), которые достигают глубоких слоев кожи. Они способны проходить через мозговую оболочку и воздействовать на рецепторы мозга. Вследствие нагрева мозговых оболочек коры больших полушарий возможно развитие солнечного удара. У пострадавших отмечаются сильное возбуждение, потеря сознания, судороги и ряд других изменений. Под воздействием инфракрасной радиации возможны поражение органов зрения в виде катаракты (помутнение хрусталика), изменения иммунологической реактивности организма и др. Ультрафиолетовая радиация. Оказывает наиболее сильное биологическое действие, особенно лучи с длиной волн от 315 до 290 нм. Влияние этой части спектра связано с непосредственным воздействием на структуру молекулы белка. В результате сложных изменений (денатурация и коагуляция белка) отмечается снижение стойкости белка к ферментам. При этом значительно усиливаются протеолитические процессы в коже, что обусловливает появление в крови гистамина и гистаминоподобных веществ. Воздействуя на нервную систему, эти продукты рефлекторным путем оказывают влияние на весь организм. УФ-лучи, являясь неспецифическим стимулятором физиологических функций, оказывают положительное влияние на общее самочувствие и работоспособность. Под их действием происходит усиление деятельности надпочечников, щитовидной и других эндокринных желез. УФ-лучи стимулируют белковый, жировой, углеводный и минеральный обмен. Отмечено их действие на функции кроветворения и на иммунологические процессы, что обусловливает повышение защитных сил организма. Дозированное УФ-облучение оказывает положительное влияние на течение таких заболеваний, как скарлатина, гастрит, бронхиальная астма, крупозная пневмония, ревматизм и др. Большое значение имеет бактерицидный эффект УФ-радиации, в результате чего происходит обеззараживание воздуха, воды, почвы. Спектр УФ-излучения солнца делят на две области: А-излу- чение с длиной волн от 400 до 315 нм и В-излучение с длиной волн от 320 до 280 нм. Однако выделяют еще область С с длиной волн менее 280 нм. Биологическое действие УФ-радиации зависит не только от количества, но и от качества поглощенной кожным покровом лучистой энергии. Прозрачность кожи для всех длин волн УФ-спектра неодинакова. Установлено, что роговой слой кожи не пропускает лучи короче 200 нм, а эпидермис с сосочковым слоем — лучи с длиной волн менее 313 нм. Следовательно, глубина проникновения УФ-излучения в кожу составляет около 0,5 мм. Наиболее характерной реакцией организма на воздействие УФ-излучения с длиной волн 400—315 нм является развитие пигментации, которая наступает без предварительного покраснения кожи. Специфической реакцией организма на действие УФ-радиации является развитие эритемы (покраснение). Ее в большей степени способны вызывать лучи с длиной волн 253,7 и 296,7 нм. Механизм возникновения эритемы изучен недостаточно. Считают, что в ее основе лежит сосудорасширяющий эффект гистамина и гистаминоподобных веществ, образующихся в результате УФ-облучения. Кроме того, установлено, что эритема, полученная от воздействия средневолновых УФ-излу- чений и инфракрасных излучений, значительно отличается от эритемы, развивающейся от коротковолновых излучений (с длиной волн менее 280 нм). Следует иметь в виду, что передозировка УФ-облучения может привести к серьезным последствиям. Даже незначительный перегрев на солнце может сопровождаться эритематозным раздражением кожи, недомоганием, головными болями, повышением температуры тела. В тяжелых случаях могут развиваться ожоги, дерматиты с явлениями экссудации и отечностью. Воздействие УФ-радиации на органы зрения может привести к развитию фотоофтальмии (гиперемия и отек конъюнктивы, блефароспазм, слезотечение, светобоязнь). Следующей характерной особенностью УФ-излучения с длиной волн 320—280 нм является его способность предупреждать так называемую D-витаминную недостаточность. В этом заключается его специфическое антирахитическое действие. Недостаточное воздействие УФ-излучения на организм человека обусловливает разнообразные проявления D-авитаминоза. В первую очередь нарушается трофика ЦНС, что ведет к ослаблению окислительно-восстановительных процессов. При недостаточности витамина D нарушается фосфор-кальциевый обмен, который тесно связан с процессами окостенения скелета, кислотно-основным состоянием, свертываемостью крови и др. Отмечаются падение работоспособности и снижение резистентности организма к простудным заболеваниям. Наиболее чувствительны к недостаточности УФ-радиации маленькие дети, у которых в результате D-авитаминоза может развиться рахит. У взрослых вследствие D-авитаминоза отмечается ослабление связочного аппарата суставов, снижение плотности (ос- теопороз) костей, замедленное срастание их при переломах. Имеются данные, подтверждающие способность УФ-радиации при длительном чрезмерном облучении вызывать злокачественные опухоли, в частности рак кожи. Наибольшей активностью обладают лучи с длиной волн 253,7 нм, причем отмечено, что рак кожи наблюдается чаще у светлокожих, чем у темнокожих людей и в тех районах земного шара, где интенсивнее солнечная радиация. В России рак кожи в южных районах составляет 20—22 % всех форм рака, в то время как в северных районах он не превышает 7 %. УФ-голодание возможно в Заполярье, среди жителей промышленных городов, где наблюдаются большое число пасмурных и туманных дней, а также высокая загрязненность атмосферного воздуха промышленными выбросами. Недостаток УФ-облучения могут испытывать рабочие угольной, горнорудной промышленности, больные, длительно находящиеся на постельном режиме. Недостаточность УФ-радиации отражается на процессах фотосинтеза растений. В частности, у злаковых это приводит к снижению содержания белка и увеличению количества углеводов в зернах. Для профилактики явлений, связанных с недостаточностью солнечного облучения, широкое применение нашли искусственные источники Уф-излучения: ртутно-кварцевые лампы, эри- темные люминесцентные лампы и др. Бактерицидное действие УФ-радиации (лучи с длиной волн от 275 до 180 нм) используется в медицине при санации воздушной среды в операционных, в асептических блоках аптек, в микробиологических блоках и т. д. Бактерицидные лампы с данным спектром используются для обеззараживания молока, дрожжей, безалкогольных напитков. Они успешно применяются для обеззараживания питьевой воды, лекарств и др. Видимая радиация. Солнце испускает излучение не только ультрафиолетового и инфракрасного спектра, но и мощный поток видимых лучей. Интенсивность видимого спектра солнечной радиации у поверхности Земли зависит от погоды, высоты стояния Солнца над горизонтом и других факторов. Дневная освещенность в средней полосе нашей страны в июле составляет около 65 ООО лк, а в декабре — 4000 лк и менее. На уровень дневной освещенности существенное влияние оказывает запыленность воздуха. Установлено, что в районах с крупной промышленностью интенсивность видимого спектра на 30—40 % меньше по сравнению с районами, где чистый атмосферный воздух. Свет оказывает значительное психофизиологическое действие на организм. В зависимости от спектрального состава он может вызывать возбуждение и усиливать чувство тепла (оранжево-красная часть спектра). Холодные тона в сине-фиолето- вой части спектра усиливают тормозные процессы в ЦНС. Желто-зеленые цвета оказывают успокаивающее влияние на организм. Это используется, например, при эстетическом оформлении аптечных учреждений, предприятий химико-фармацевтической промышленности и др. Свет усиливает обменные процессы, повышает деятельность отдельных систем организма. Особенно значительное влияние свет оказывает на функцию зрения. Являясь раздражителем зрительного анализатора, свет тем самым оказывает огромное влияние на ЦНС. При этом он играет ведущую роль в процессах восприятия окружающего мира, образовании суточного ритма, представляющего собой закономерное чередование периодов покоя и мышечной активности, процессов возбуждения и торможения. Велика роль света и в процессах фотосинтеза растений. Температура Атмосферный воздух нагревается главным образом от почвы и воды за счет поглощенной ими солнечной энергии. Этим объясняется более низкая температура перед восходом Солнца и максимальная — между 13—15 ч, когда поверхностный слой земли максимально прогревается. Температура воздуха весьма существенно влияет на микроклимат помещений (климат внутренней среды помещений, который определяется действующими на организм человека сочетаниями температуры, влажности и скорости движения воздуха, а также температуры окружающих поверхностей). Температура воздуха зависит от географической широты. Так, самая высокая средняя годовая температура на земном шаре наблюдается в южных широтах — странах Африки, Южной Америки, Средней Азии. Здесь температура воздуха в теплое время года может достигать 63 °С, в холодный период понижаться до —15 °С. Самая низкая температура на нашей планете отмечается в Антарктиде, где она может понижаться до —94 °С. Температура воздуха значительно снижается с увеличением высоты над уровнем моря. Нагретые приземные слои воздуха поднимаются и постепенно охлаждаются в среднем на 0,6 °С на каждые 100 м подъема. От экватора к полюсам дневные колебания температуры уменьшаются, годовые — увеличиваются. Вода морей и океанов, аккумулируя тепло, смягчает климат, делает его более теплым, уменьшает суточные и сезонные колебания температуры. Под воздействием температуры происходят различные физиологические сдвиги во многих системах организма. В зависимости от величины температуры могут наблюдаться явления перегревания или охлаждения. При повышенных температурах (25—35 °С) окислительные процессы в организме несколько снижаются, но в дальнейшем они могут возрастать. Дыхание учащается и становится поверхностным. Легочная вентиляция вначале возрастает, а затем остается без изменений. Длительное воздействие высокой температуры приводит к значительному нарушению водно-солевого и витаминного обмена. Особенно характерны эти изменения при выполнении физической работы. Усиленное потоотделение ведет к потере жидкости, солей и водорастворимых витаминов. Например, при тяжелой работе в условиях высокой температуры воздуха может выделяться до 10 л и более пота, а с ним до 30—40 г хлорида натрия. Установлено, что потеря 28—30 г хлорида натрия ведет к понижению желудочной секреции, а больших количеств — к мышечным спазмам и судорогам. При сильном потоотделении потери водорастворимых витаминов (С, В1; В2) могут достигать 15—25 % суточной потребности. Значительные изменения при воздействии температуры отмечаются в сердечно-сосудистой системе. Усиливается кровоснабжение кожи и подкожной клетчатки за счет расширения системы капилляров, учащается пульс. При одной и той же физической нагрузке частота пульса тем больше, чем выше температура воздуха. Частота сердечных сокращений возрастает вследствие раздражения терморецепторов, повышения температуры крови и образования продуктов метаболизма. Артериальное давление, как систолическое, так и в большей степени диастолическое, при действии высоких температур снижается. Повышается вязкость крови, увеличивается содержание гемоглобина и эритроцитов. Высокая температура оказывает неблагоприятное влияние на ЦНС, проявляющееся в ослаблении внимания, замедлении двигательных реакций, ухудшении координации движений. Длительное воздействие высокой температуры на организм может привести к ряду заболеваний. Наиболее частым осложнением является перегревание (тепловая гипертермия), возникающее при избыточном накоплении тепла в организме. Различают легкую и тяжелую формы перегревания. При легкой форме основным признаком гипертермии является повышение температуры тела до 38 °С и более. У пострадавших наблюдаются гиперемия лица, обильное потоотделение, слабость, головная боль, головокружение, искажение цветового восприятия предметов (окраска в красный, зеленый цвета), тошнота, рвота. В тяжелых случаях перегревание протекает в форме теплового удара. Наблюдаются быстрый подъем температуры до 41 °С и выше, падение артериального давления, потеря сознания, нарушение состава крови, судороги. Дыхание становится частым (до 50—60 в минуту) и поверхностным. При оказании первой помощи необходимо принять меры к охлаждению организма (прохладный душ, ванна и др.). В результате нарушения водно-солевого баланса при высокой температуре может развиться судорожная болезнь, а при интенсивном прямом облучении головы — солнечный удар. Под воздействием низких температур снижается температура кожи, особенно открытых участков тела. При этом отмечаются одновременно ухудшение тактильной чувствительности и понижение сократительной способности мышечных волокон. При значительном охлаждении изменяется функциональное состояние ЦНС, что обусловливает ослабление болевой чувствительности, адинамию, сонливость, снижение работоспособности. Понижение температуры отельных участков тела приводит к болевым ощущениям, сигнализирующим об опасности переохлаждения. Местное и общее охлаждение организма является причиной простудных заболеваний: ангин, ОРВИ, пневмоний, невритов, радикулитов, миозитов и др. Действие температуры на организм определяется не только ее абсолютной величиной, но и амплитудой колебаний. Организм труднее приспосабливается к частым и резким колебаниям температуры. Многое зависит и от того, с какой влажностью и скоростью движения воздуха сочетается этот фактор. Повышенная влажность при низких температурах, увеличивая теплопроводность воздуха, усиливает его охлаждающие свойства. Особенно возрастает отдача тепла с увеличением подвижности воздуха. Влажность Влажность воздуха обусловливается испарением воды с поверхности морей и океанов. Вертикальный и горизонтальный воздухообмен способствует распространению влаги в тропосфере Земли. Относительная влажность подвержена суточным колебаниям, что связано прежде всего с изменением температуры. Чем выше температура воздуха, тем большее количество водяных паров требуется для его полного насыщения. При низких температурах необходимо меньшее количество водяных паров для максимального насыщения. В гигиеническом отношении наиболее важное значение имеют относительная влажность и дефицит насыщения. Эти показатели дают представление о степени насыщения воздуха водяными парами и свидетельствуют о возможности отдачи тепла путем испарения. С возрастанием дефицита влажности увеличивается способность воздуха к приему водяных паров. В этих Таблица 3.2. Влияние влажности воздуха при различных его температурах на выделение влаги человеческим организмом (по JI. К. Хоцянову)
условиях более интенсивно будет протекать отдача тепла в результате потоотделения (табл. 3.2). В зависимости от степени влажности воздуха по-разному ощущается действие температуры. Высокая температура воздуха в сочетании с низкой его влажностью переносится человеком значительно легче, чем при высокой влажности. С увеличением влажности воздуха снижается отдача тепла с поверхности тела испарением. Насыщение воздуха водяными парами в условиях низкой температуры будет способствовать переохлаждению тела. Важно знать, что потоотделение и испарение при температуре тела выше 35 °С являются основными путями отдачи тепла в окружающую среду. Установлено, что при обычных метеорологических условиях наиболее оптимальной относительной влажностью является 40—60 %. Скорость движения Как известно, воздух практически постоянно находится в движении, что связано с неравномерностью нагрева земной поверхности солнцем. Разница в температуре и давлении обусловливает перемещение воздушных масс. Движение воздуха принято характеризовать направлением и скоростью. Отмечено, что для каждой местности характерна закономерная повторяемость ветров преимущественно одного направления. Для выявления закономерности направлений используют специальную графическую величину — розу ветров, представляющую собой линию румбов, на которых отложены отрезки, соответствующие по длине числу и силе ветров определенного направления, выраженного в процентах по отношению к общему их числу. Знание этой закономерности позволяет правильно осуществлять взаиморасположение и ориентацию жилых зданий, больниц, аптек, санаториев, промышленных предприятий и др. Скорость движения воздуха определяется числом метров, пройденных им в секунду. Скорость перемещения воздушных масс играет существенную роль в процессах теплообмена организма. Сильный ветер резко увеличивает теплоотдачу путем конвекции и испарения пота. В жаркие дни ветер оказывает благоприятное влияние на организм, так как предохраняет его от перегревания. При низких температурах и высокой влажности движение воздуха способствует переохлаждению. Сильный и продолжительный ветер оказывает неблагоприятное влияние на нервно-психическое состояние, на общее самочувствие, затрудняет выполнение физической работы, увеличивает нагрузку при движении. Наконец, гигиеническое значение движения воздуха заключается в том, что оно способствует вентиляции жилых, общественных зданий и промышленных помещений, а также играет важную роль в удалении и самоочищении поступающих в атмосферу загрязнений (пыль, пары, газы и др.). Атмосферное давление Жизнь человека протекает в основном на поверхности Земли на высоте, близкой к уровню моря. При этом организм находится под постоянным давлением столба воздуха окружающей атмосферы. На уровне моря эта величина равна 101,3 кПа (760 мм рт. ст., или 1 атм). Вследствие того что наружное давление полностью уравновешивается внутренним, наш организм практически не ощущает тяжести атмосферы. Атмосферное давление подвержено суточным и сезонным колебаниям. Чаще всего эти изменения не превышают 200—300 Па (20—30 мм рт. ст.). Здоровые люди обычно не замечают этих колебаний и они практически не оказывают влияния на их самочувствие. Однако у определенной категории, например лиц пожилого возраста, страдающих ревматизмом, невралгиями, гипертонической болезнью и другими заболеваниями, эти колебания вызывают изменение самочувствия, приводят к нарушению отдельных функций организма. В промышленности, авиации, на водном транспорте выполняются работы, связанные с воздействием повышенного или пониженного атмосферного давления. Пониженное атмосферное д а в л е н и е. С действием пониженного атмосферного давления человек сталкивается при полетах на летательных аппаратах, восхождении на горы, геологических изысканиях в горах, работе на открытых горных рудниках и т. д. Подъем и пребывание на высоте связаны с воздействием на организм пониженного барометрического давления и низкого парциального давления газов, в первую очередь кислорода. Эти факторы обусловливают симптомокомплекс так называемой горной болезни, в развитии которой ведущую роль играет кислородное голодание. В результате нарушения деятельности ЦНС появляются усталость, сонливость, тяжесть в голове, головная боль, нарушение координации движений, повышенная возбудимость, сменяющаяся апатией и депрессией. При более глубокой гипоксии отмечаются нарушения работы сердца: тахикардия, пульсация артерий (сонной, височной и др.), изменения ЭКГ. Нарушается моторная и секреторная функции желудочно-кишечного тракта, меняется периферический состав крови. Более значительное и резкое падение атмосферного давления может вызвать явления декомпрессии. Это опасное осложнение возникает в результате выделения газов, обычно растворенных при нормальном барометрическом давлении, из крови и тканевых жидкостей и сопровождается болями в мышцах, суставах, костях. Наиболее грозным осложнением декомпрессионной болезни является воздушная эмболия. Для повышения устойчивости организма к условиям пониженного атмосферного давления необходима акклиматизация. Специфические методы тренировки с учетом действия отмеченных факторов позволяют повысить репродуктивную способность костного мозга, увеличить содержание эритроцитов и гемоглобина в крови. При этом возрастает кислородная емкость крови, что облегчает диффузию кислорода из крови в ткани. В процессе акклиматизации улучшается распределение крови, в частности увеличивается кровоснабжение мозга и сердца за счет расширения их кровеносных сосудов и сужения сосудов кожи, мышц и некоторых внутренних органов. К мероприятиям по акклиматизации к кислородной недостаточности следует отнести тренировки в барокамерах, пребывание в условиях высокогорья, закаливание и др. Положительное влияние оказывает прием повышенных количеств витаминов С, В|, В2, В6, РР, фолиевой кислоты и витамина Р. Повышенное атмосферное давление. Действию повышенного барометрического давления подвергается определенная категория лиц: водолазы, рабочие подводных и подземных строительных работ. Кратковременному (мгновенному) воздействию высокого давления подвергаются лица при разрыве бомб, мин, снарядов, а также при выстрелах и запусках ракет. Чаще всего работа в условиях повышенного атмосферного давления осуществляется в специальных камерах-кессонах или скафандрах. При работе в кессонах различают три периода: компрессия, пребывание в условиях повышенного давления и декомпрессия. Компрессия характеризуется незначительными функциональными нарушениями: шум в ушах, заложенность, болевые ощущения вследствие механического давления воздуха на барабанную перепонку. Тренированные люди эту стадию переносят легко, без неприятных ощущений. Пребывание в условиях повышенного давления обычно сопровождается легкими функциональными нарушениями: уре- жением пульса и частоты дыхания, снижением максимального и повышением минимального артериального давления, пони- кением кожной чувствительности и слуха. Наблюдается усиле- ше перистальтики кишечника, повышение свертываемости кро- 1И, уменьшение содержания гемоглобина и эритроцитов. Важ- юй особенностью этой фазы является насыщение крови и тка- юй растворенными газами (сатурация), особенно азотом. Этот гроцесс продолжается до тех пор, пока давление газов в орга- шзме и окружающей среде не достигнет равновесия. В период [екомпрессии в организме наблюдается обратный процесс — 1ыведение из тканей газов (десатурация). При правильно орга- шзованной декомпрессии растворенный азот в виде газа выдерется через легкие (за 1 мин — 150 мл азота). Однако при быстрой декомпрессии азот не успевает выделяться и остается в фови и тканях в виде пузырьков, причем наибольшее количе- :тво их скапливается в нервной ткани и подкожной клетчатке. )тсюда и из других органов азот поступает в кровеносное русло [ вызывает газовую эмболию (кессонная болезнь). Характер- 1ым признаком этого заболевания являются тянущие боли в »бласти суставов и мышц. При эмболии кровеносных сосудов ДНС наблюдаются головокружение, головная боль, расстрой- тво походки, речи, судороги. В тяжелых случаях возникают па- юзы конечностей, расстройство мочевыделения, поражаются [егкие, сердце, глаза и т. д. Для предупреждения возможного >азвития кессонной болезни важны правильная организация [екомпрессии и соблюдение рабочего режима. |