Главная страница

Патофиз.Т1. 11.09.2011. Патофиз.Т1. 11.09. Литвицкий Пётр Францевич патофизиология кафедра патофизиологии


Скачать 4.08 Mb.
НазваниеЛитвицкий Пётр Францевич патофизиология кафедра патофизиологии
АнкорПатофиз.Т1. 11.09.2011.doc
Дата01.02.2017
Размер4.08 Mb.
Формат файлаdoc
Имя файлаПатофиз.Т1. 11.09.2011.doc
ТипУчебник
#1627
страница63 из 88
1   ...   59   60   61   62   63   64   65   66   ...   88

Адаптивные реакции организма при гипоксии

Действие на организм фактора, вызывающего гипоксию любого типа, сопровождается включением взаимосвязанных процессов 2 категорий: обусловливающих развитие гипоксии и одновременно обеспечивающих адаптацию организма к гипоксии и направленных на поддержание гомеостаза в данных условиях.
Процессы первой категории описаны выше. Ниже характеризуются общие механизмы адаптации организма к гипоксии.

Общая характеристика процесса адаптации к гипоксии

При действии даже умеренной гипоксии сразу начинает формироваться поведенческая реакция, направленная на поиск среды существования, оптимально обеспечивающая уровень биологического окисления. Человек может также направленно менять условия жизнедеятельности с целью устранения состояния гипоксии.
Возникшая гипоксия служит системообразующим фактором: в организме формируется динамичная функциональная система по достижению и поддержанию оптимального уровня биологического окисления в клетках.
Эта система реализует свои эффекты за счет активации доставки кислорода и субстратов метаболизма к тканям и включения их в реакции биологического окисления. В структуру системы входят легкие, сердце, сосудистая система, кровь, системы биологического окисления и регуляторные системы.
Условно адаптивные реакции подразделены на 2 группы: экстренной адаптации и долговременной адаптации.

Экстренная адаптация к гипоксии

Механизмы экстренной адаптации к гипоксии представлены на рисунке 16-8. Они реализуются за счет резкой активации функционирования легких, сердечно-сосудистой системы, системы крови и биологического окисления в клетках.
Видно, что активация первых 3 систем обеспечивает повышенную доставку субстратов обмена веществ и кислорода к органам и тканям, а интесификация биологического окисления — ресинтез АТФ, необходимый для повышенного функционирования органов и пластических процессов в них.
Ы верстка! вставить рисунок «рис-16-8» Ы

Рис. 16-8. Механизмы экстренной адаптации организма к гипоксии.
Причина активации механизмов срочной адаптации организма к гипоксии  недостаточность биологического окисления. Как следствие, в тканях снижается содержание АТФ, необходимого для обеспечения оптимального уровня жизнедеятельности.
Ключевое и необходимое звено процесса экстренной адаптации организма к гипоксии — активация механизмов транспорта O2 и субстратов обмена веществ к тканям и органам. Эти механизмы предсуществуют в каждом организме. В связи с этим они активируются сразу (экстренно, срочно) при возникновении гипоксии и снижении эффективности биологического окисления.
Повышенное функционирование систем транспорта кислорода и субстратов метаболизма к клеткам сопровождается интенсивным расходом энергии и субстратов обмена веществ. Это означает, что, механизмы экстренной адаптации к гипоксии имеют высокую энергетическую и субстратную «цену». Именно это является (или может стать) фактором ограничения уровня и длительности гиперфункционирования органов.

Система внешнего дыхания

Недостаточность биологического окисления при гипоксии ведет к гипервентиляции — возрастанию объема альвеолярной вентиляции.
Причина гипервентиляции — активация афферентной импульсации от хеморецепторов (аорты, каротидной зоны сонных артерий, ствола мозга и других регионов организма) в ответ на изменение показателей газового состава крови (снижение раО2, увеличение раCO2 и др.).
Механизмы гипервентиляции: увеличение частоты и глубины дыхательных движений и числа раскрывшихся резервных альвеол. В результате минутный объем дыхания (МОД) может возрасти более чем на порядок: с 5–6 л в покое до 90–110 л в условиях гипоксии.

Сердце

При острой гипоксии функция сердца значительно увеличивается.
Причина гиперфункции сердца — активации симпатикоадреналовой системы.
Механизмы гиперфункции сердца:
 тахикардия. Она, как правило, сочетается с увеличением сердечного выброса;
 увеличение ударного выброса крови из сердца. Благодаря этому возрастает интегративный показатель функции сердца — минутный объем кровообращения (сердечный выброс крови). Если в покое он равен 4–5 л, то при гипоксии может достигать 30–40 л;
 повышение линейной и объемной скорости кровотока в сосудах.

Сосудистая система

В условиях гипоксии развивается феномен перераспределения, или централизации кровотока.
Причины и механизмы феномена централизации кровотока:
 активация в условиях гипоксии симпатикоадреналовой системы и высвобождения катехоламинов. Последние вызывают сужение артериол и снижение притока крови по ним к большинству тканей и органов (мышцам, органам брюшной полости, почкам, подкожной клетчатке и др.);
 накопление в миокарде и ткани мозга метаболитов с сосудорасширяющим эффектом: аденозина, простациклина, ПгЕ, кининов и других. Эти вещества не только препятствуют реализации вазоконстрикторного действия катехоламинов, но и обеспечивают расширение артериол и увеличение кровоснабжения сердца и мозга в условиях гипоксии.
Последствия феномена централизации кровотока:
 расширение артериол и увеличение кровоснабжения мозга и сердца;
 уменьшение объема кровоснабжения в других органах и тканях: мышцах, подкожной клетчатке, сосудах брюшной полости, почках в связи с дсужением просвета артериол.

Система крови

Острая гипоксия любого генеза сопровождается адаптивными изменениями в системе крови. Они заключаются в:
 активации выхода эритроцитов из костного мозга и депо крови (в последнем случае — одновременно с другими ФЭК). Причина мобилизации эритроцитов — высокая концентрация в крови катехоламинов, тиреоидных и кортикостероидных гормонов. В результате при острой гипоксии развивается полицитемия. Следствие мобилизации эритроцитов  увеличение кислородной емкости крови;
 повышении степени диссоциации HbO2 в тканях вследствие:
 гипоксемии, особенно в капиллярной и венозной крови. В связи с этим именно в капиллярах и посткапиллярных венулах происходит возрастание степени отдачи кислорода HbO2;
 ацидоза (закономерно развивающегося при любом типе гипоксии);
 повышенной в условиях гипоксии концентрации в эритроцитах 2,3-дифосфоглицерата, а также других органических фосфатов: АДФ, пиридоксальфосфата. Эти вещества стимулируют отщепление кислорода от HbO2;
 увеличении сродства Hb к кислороду в капиллярах легких. Этот эффект реализуется при участии органических фосфатов, в основном — 2,3-дифосфоглицерата. При этом важное значение имеет свойство Hb связывать значительное количество кислорода даже в условиях существенно сниженного pО2 в капиллярах легких. При pО2 равном 100 мм рт. ст. образуется 96% HbO2, при pО2 80 и 50 мм рт. ст. — 90 и 81% соответственно.

Системы биологического окисления

Активация обмена веществ — важное звено экстренной адаптации организма к острой гипоксии. Это обеспечивает:
 повышение эффективности процессов усвоения кислорода и субстратов окисления тканями организма и доставки их к митохондриям;
 активацию ферментов окисления и фосфорилирования, что наблюдается при умеренном повреждении клеток и их митохондрий;
 увеличение степени сопряжения процессов окисления и фосфорилирования адениннуклеотидов: АДФ, АМФ, а также креатина;
 активацию гликолитического пути окисления. Этот феномен регистрируется при всех типах гипоксии, особенно на ранних ее этапах.
Причины активации гликолиза:
 снижение внутриклеточного содержания АТФ и его ингибирующего влияния на ферменты гликолиза;
 увеличение содержания в клетках продуктов гидролиза АТФ (АДФ, АМФ, неорганического фосфата), активирующих ключевые гликолитические ферменты.

Долговременная адаптация

Причина формирования механизмов долговременной адаптации к гипоксии — повторная или продолжающаяся недостаточность биологического окисления умеренной выраженности.
Условия формирования механизмов долговременной адаптации к гипоксии:
 повторяемость и/или оптимальная длительность умеренной гипоксии. Это вызывает многократную активацию срочных механизмов адаптации, что обеспечивает формирование структурно-функциональной основы для процессов долговременного адаптации к гипоксии. Существенно, чтобы интервал между эпизодами умеренной гипоксии не был слишком велик или мал. Большой интервал приведет к ликвидации структурных (субклеточных, клеточных, органно-тканевых) адаптивных изменений. Малый интервал будет недостаточен для их развития и закрепления;
 выраженность гипоксии. Гипоксия слишком малой выраженности не активирует механизмов срочной и долговременной адаптации. Регистрируются лишь преходящие реакции в диапазоне физиологического ответа на снижение биологического окисления. Гипоксия чрезмерной выраженности вызывает срыв процесса адаптации, расстройства функций, обмена веществ и повреждение структур организма;
 оптимальное состояние жизнедеятельности организма. Это позволяет развить механизмы срочной адаптации и закрепить структурно-функциональные изменения, лежащие в основе долговременной адаптации к гипоксии. Недостаточность каких-либо систем организма (дыхательной, ССС, крови, тканевого метаболизма) и/или пластических процессов делают невозможным осуществление адаптивных процессов к гипоксии (как и к другим экстремальным факторам).

Механизмы долговременной адаптации

Долговременная адаптация к гипоксии реализуются на всех уровнях жизнедеятельности: от организма в целом до клеточного метаболизма.
Реализуется процесс адаптации к длительной гипоксии (также как и к эксиренной) при участии систем внешнего дыхания, сердечно-сосудистой, крови и биологического окисления. Основной среди них становится значительная активация процессов образования митохондрий и окисления в них!
Процесс долговременной адаптации к гипоксии имеет несколько важных особенностей. К наиболее значимым среди них относят следующие:
 процессы приспособления к повторной и/или длительной гипоксии формируются длительно в результате многократной и/или продолжительной активации срочной адаптации к гипоксии;
 переход от несовершенной и неустойчивой экстренной адаптации к гипоксии к устойчивой и долговременной адаптации имеет существенное биологическое (жизненно важное) значение: это создает условия для оптимальной жизнедеятельности организма в новых, часто экстремальных условиях существования;
 основой перехода организма к состоянию долговременной адаптированности к гипоксии является активация синтеза нуклеиновых кислот и белков в усиленно работающих тканях и органах. К ним относят, прежде всего, те, которые обеспечивают транспорт кислорода и субстратов обмена веществ, а также ткани, интенсивно функционирующие в условиях гипоксии;
 основное звено долговременного приспособления к гипоксии — значительное повышение эффективности процессов биологического окисления в митохондриях (в отличие от экстренной адаптации к гипоксии, при которой ведущее значение имеет активация механизмов транспорта O2 и субстратов обмена веществ к тканям);
 системы доставки кислорода и продуктов обмена веществ к тканям (внешнего дыхания и кровообращения) при устойчивой адаптации к гипоксии также приобретают новые качества: повышенные мощность, экономичность и надежность функционирования.
Системы и главные процессы реализации механизма долговременной адаптации к гипоксии представлены на рисунке 16-9.
Ы верстка! вставить рисунок «рис-16-9» Ы

Рис. 16-9. Механизмы долговременной адаптации организма к гипоксии.
К основным механизмам долговременной адаптации организма к гипоксии относят системы биологического окисления, систему внешнего дыхания, сердце, сосудистую систему, систему крови, метаболизм и системы регуляции.
Системы биологического окисления
Они обеспечивают оптимальное энергетическое обеспечение гиперфункционирующих структур и уровень пластических процессов в них в условиях гипоксии. Это достигается благодаря увеличению:
 числа митохондрий и количества крист в них;
 числа молекул ферментов тканевого дыхания в каждой митохондрии, а также активности ферментов, особенно — цитохромоксидазы;
 эффективности процессов биологического окисления и сопряжения его с фосфорилированием;
 эффективности механизмов анаэробного ресинтеза АТФ в клетках.
Система внешнего дыхания
Она обеспечивает уровень газообмена, достаточный для оптимального течения обмена веществ и пластических процессов в тканях. Это достигается благодаря:
 гипертрофии легких и увеличению в связи с этим площади альвеол, числа капилляров в межальвеолярных перегородках, уровня кровотока в этих капиллярах;
 увеличению диффузионной способности аэрогематического барьера легких;
 повышению эффективности соотношения вентиляции альвеол и перфузии их кровью (вентиляционно-перфузионного соотношения);
 гипертрофии и возрастанию мощности дыхательной мускулатуры;
 возрастанию жизненной емкости легких (ЖЕЛ).
Сердце
При долговременной адаптации к гипоксии увеличивается сила, а также скорость процессов сокращения и расслабления миокарда. В результате происходит возрастание объема и скорости выбрасываемой в сосудистое русло крови — ударного и сердечного (минутного) выбросов. Эти эффекты становятся возможными благодаря:
 умеренной сбалансированной гипертрофии всех структурных элементов сердца — миокарда, сосудистого русла, нервных волокон;
 увеличению числа функционирующих капилляров в миокарде;
 уменьшению расстояния между стенкой капилляра и сарколеммой кардиомиоцита;
 увеличению числа митохондрий в кардиомиоцитах и эффективности реакций биологического окисления. В связи с этим сердце расходует на 30–35% меньше кислорода и субстратов обмена веществ, чем в неадаптированном к гипоксии состоянии;
 повышению эффективности трансмембранных процессов (транспорта ионов, субстратов и продуктов метаболизма, кислорода и др.);
 возрастанию мощности и скорости взаимодействия актина и миозина в миофибриллах кардиомиоцитов;
 повышению эффективности адрен- и холинергических систем регуляции сердца.
Сосудистая система
В адаптированном организме сосудистая система способна обеспечивать такой уровень перфузии тканей кровью, который необходим для осуществления их функции даже в условиях гипоксии. В основе этого лежат следующие механизмы:
 увеличение количества функционирующих капилляров в тканях и органах;
 снижение миогенного тонуса артериол и уменьшение реактивных свойств стенок резистивных сосудов к вазоконстрикторам — катехоламинам, АДГ, лейкотриенам, отдельным ПГ и другим. Это создает условия для развития устойчивой артериальной гиперемии в функционирующих органах и тканях.
Система крови
При устойчивой адаптации организма к гипоксии существенно возрастают кислородная емкость крови, скорость диссоциации HbO2, сродство дезоксигемоглобина к кислороду в капиллярах легких.
Увеличение кислородной емкости крови — это результат стимуляции эритропоэза и развития эритроцитоза. Активация эритропоэза, в свою очередь, вызвана увеличением в условиях ишемии и гипоксии образования в почках эритропоэтина.
Метаболизм
Обмен веществ в тканях при достижении состояния устойчивой адаптированности к гипоксии имеет несколько важных особенностей. К числу наиболее важных относят следующие:
 экономное использование кислорода и субстратов обмена веществ в реакциях биологического окисления и пластических процессах;
 высокая эффективность реакций анаэробного ресинтеза АТФ;
 доминирование анаболических процессов в тканях по сравнению с катаболическими;
 высокая мощность и мобильность механизмов трансмембранного переноса ионов. В значительной мере это следствие повышения эффективности работы мембранных АТФаз. Это обеспечивает регуляцию трансмембранного распределения ионов, миогенного тонуса артериол, водно-солевого обмена и других важных процессов.
Системы регуляции
Регуляторные системы адаптированного к гипоксии организма обеспечивают достаточную эффективность, экономичность и надежность управления его жизнедеятельностью. Это достигается благодаря включению механизмов нервной и гуморальной регуляции функций.
Нервная регуляция
Значительные изменения как в высших отделах мозга, так и в вегетативной нервной системе адаптированного к гипоксии организма характеризуются:
 повышенной резистентностью нейронов к гипоксии и дефициту АТФ, а также некоторым другим факторам (например, токсинам, недостатку субстратов метаболизма);
 гипертрофией нейронов и увеличением числа нервных окончаний в тканях и органах;
 увеличенной чувствительностью рецепторных структур к нейромедиаторам. Последнее, как правило, сочетается с уменьшением синтеза и высвобождения нейромедиаторов.
Указанные, а также и другие изменения в нервной системе способствуют:
 реализации мобильных регулирующих нейро-гуморальных влияний на органы и ткани;
 быстрой выработке и сохранению новых условных рефлексов;
 переходу приобретенных навыков из кратковременных в долговременные;
 повышенной устойчивости нервной системы к патогенным воздействиям.
Гуморальная регуляция
Перестройка в условиях гипоксии функционирования эндокринной системы обусловливает:
 меньшую степень стимуляции мозгового вещества надпочечников, гипоталамо гипофизарно надпочечниковой и других эндокринных систем. Это ограничивает активацию механизмов стресс-реакции и ее возможные патогенные эффекты;
 повышение чувствительности рецепторов клеток к гормонам, что способствует уменьшению объема их синтеза в железах внутренней секреции.
В целом, изменения в системах регуляции потенцируют как системные, так и органные приспособительные реакции организма, жизнедеятельность которого осуществляется в условиях гипоксии.
1   ...   59   60   61   62   63   64   65   66   ...   88


написать администратору сайта