|
Учебник по гимнастике. Гимнастика учеб. М. Л. Журавин 4 10. 3 10. 4 совместно с О. В. Загрядской 10. 5 10. 6 совместно
5.2. Статические упражнения
Статическими называются такие упражнения (позы), при выполнении которых сумма моментов сил, действующих на тело гимнаста, равна нулю. Скорость и ускорение при этом также равны нулю.
При выполнении статических упражнений на соревнованиях от гимнаста требуется умение сохранять устойчивость, неподвижность в принятой позе в течение 2 — 3 с, с тем чтобы судьи могли зафиксировать статическое положение тела или отдельных его звеньев. Невыполнение этого условия влечет за собой снижение оценки в соответствии с правилами соревнований.
Способы выполнения статических упражнений основываются на законах статики, которая изучает условия равновесия твердых тел. В гимнастике близкими, но не тождественными статическим упражнениям являются висы, стойки, различные позы, равновесия. При этом встречаются такие упражнения, при выполнении которых тело гимнаста может находиться в состоянии устойчивого, неустойчивого, ограниченно устойчивого и близкого к безразличному равновесия.
При устойчивом равновесии общий центр массы (ОЦМ) тела располагается под опорой (висы, упоры на руках). Многие из этих Упражнений не требуют больших усилий для сохранения равновесия, но нуждаются в огромном напряжении мышц для уравновешивания силы тяжести или массы собственного тела. Примерами таких упражнений являются упор руки в стороны (рис. 102), горизонтальные висы (рис. 103, 104) и др. Здесь законы анатомии, физиологии и психологии диктуют свои условия законам механики.
При неустойчивом равновесии ОЦМ тела располагается над °порой. Если вывести тело из равновесия, то ОЦМ под действием силы тяжести будет понижаться, выйдет за пределы площади опоры
101 и без дополнительных усилий самого гимнаста или посторонней помощи не вернется в исходное положение (рис. 105, 106). Трудность выполнения таких упражнений определяется главным образом сложностью сохранения равновесия. Устойчивость равновесия будет тем выше, чем ниже ОЦМ тела, больше площадь опоры и проекция ОЦМ ближе к центру площади опоры. Устойчивость равновесия характеризует угол устойчивости (рис. 107, 108): чем он больше, тем выше устойчивость. Однако применительно к позам человека это не всегда так: при основной стойке угол устойчивости значительно меньше, чем при стойке на голове, а устойчивость намного больше. Это несмотря на то, что при основной стойке ОЦМ тела значительно выше, чем при стойке на голове.
Устойчивость равновесия зависит от особенностей площади опоры. Ограниченная, подвижная, высокая площадь опоры затрудняет сохранение равновесия. Эти факты также говорят о необходимости учитывать законы не только механики, но и анатомии, физиологии, психологии. Устойчивость гимнаста в заданной позе определяется его возможностями активно уравновешивать возмущающие силы, своевременно останавливать начавшееся отклонение и восстанавливать положение.
102
При ограниченно устойчивом {динамическом) равновесии ОЦМ тела может колебаться в пределах площади опоры, располагаться на ее границе. Она может даже незначительно или кратковременно выходить за ее пределы, с тем чтобы гимнаст мог за счет собственных усилий, технических приемов вернуть проекцию ОЦМ тела в эти пределы. Например, при размахивании, выполнении , стойки на руках махом или силой на брусьях, упражнений на коне сохранение равновесия может быть обеспечено за счет прочного захвата за жерди или за ручки коня.
Площадь опоры определяется величиной пространства, заключенного между опорными звеньями тела. Конфигурация этого пространства влияет на возможность гимнаста балансировать при ограниченно устойчивом равновесии в пределах площади опоры. Поскольку не вся площадь опоры имеет одинаковое значение для сохранения равновесия, то различают: а) эффективную площадь опоры без учета захвата; б) номинальную площадь опоры; в) пространственное поле устойчивости, совпадающее с формальными контурами площади опоры. Размеры и конфигурация этого поля зависят от морфологии опорных звеньев тела, характера связи со снарядом (хвата), от физических возможностей и состояния гимнаста (рис. 109). Гимнаст старается удерживать проекцию ОЦМ тела возможно ближе к центру площади опоры. Однако здесь могут быть исключения. Так, при выполнении равновесия на одной ноге гимнасты стараются сместить ОЦМ тела несколько вперед от середины площади опоры, с тем чтобы за счет высокой чувствительности мышц пальцев и стопы быстрее улавливать потерю равновесия и устранять ее. В этом случае в управление движениями вовлекаются закономерности анатомии, физиологии, психологии.
103
Площадь опоры и высота ОЦМ тела над опорой могут быть объединены в один критерий устойчивости — угол устойчивости. Он образуется линией проекции ОЦМ тела на опору и линией, проходящей через ОЦМ тела и край площади опоры. Чем больше этот угол, тем выше устойчивость тела в рассматриваемой плоскости. Два угла устойчивости в одной плоскости образуют угол равновесия в этой плоскости (см. рис. 107, 108). Устойчивость тела может быть охарактеризована еще так называемым моментом устойчивости. Он вычисляется произведением веса тела на расстояние от проекции ОЦМ тела на опору до края опоры (плечо силы тяжести). Чем больше этот момент, тем выше устойчивость, тем труднее вывести тело из состояния равновесия. Однако в силу того, что края опоры (ступни ног, кисти рук) — не твердые тела, они подвергаются деформации и потому не всегда могут оказывать нужное сопротивление опрокидывающему моменту. В связи с этим линия опрокидывания смещается внутрь края опорной поверхности, образуя площадь эффективной опоры. Она размещается внутри контура номинальной площади опоры. Здесь мы снова видим, как законы механики должны быть скорректированы при обучении гимнастов упражнениям и позам, требующим сохранения статического равновесия.
Безразличное равновесие. Им обладает шар. Гимнасту в ряде случаев приходится принимать положение, близкое к безразличному равновесию, например при выполнении кувырков.
5.3. Динамические упражнения
Динамическими называются такие упражнения, при выполнении которых тело гимнаста совершает движения относительно снаряда или вместе со снарядом (кольца, трапеция, гимнастическое колесо) относительно опоры. Отдельные звенья тела могут совершать движения относительно туловища и одновременно с ним. Техника исполнения этих упражнений основана на соблюдении законов динамики. Каждое звено имеет свой ОЦМ.
Гимнастические упражнения по своей форме являются системой движений, направленной на выполнение заранее поставленной двигательной задачи. При этом через работу мышц в тесное взаимодействие вовлекаются отдельные звенья тела, системы энергообеспечения, сенсорные системы, психические и личностные свойства и опыт гимнаста. Такое сложное обеспечение выполнения гимнастических упражнений изучается с позиций системно-структурного анализа.
Каждые два звена тела образуют кинематическую пару, а их совокупность — кинематическую цепь. Она может быть закрытой, открытой и свободной (рис. 110). В закрытой цепи (А) оба ее конца закреплены на опоре. Открытая кинематическая цепь (Б) об-
104
разуется в том случае, когда один из концов (руки или ноги) закреплен на внешней опоре, а другой свободен и может перемещаться. В свободной цепи (В) тело не имеет опоры.
Подвижность звеньев кинематической цепи зависит от подвижности в суставах и от места положения каждого звена по отношению к опоре. Наибольшей подвижностью (амплитудой движений) обладают звенья тела, наиболее удаленные от опоры. При хвате руками за снаряд наибольшей подвижностью, по сравнению с туловищем и руками, обладают ноги, особенно стопа и голень. В этом случае ноги являются основным рабочим звеном гимнаста. Их высокая подвижность в ходе выполнения упражнения в сочетании с большой массой позволяет накапливать ими большое количество кинетической энергии и легко распределять ее за счет внутренних реактивных сил, действующих в кинематической цепи. Так, выполняя соскок махом вперед на перекладине, кольцах и других снарядах, при сильном махе ногами вперед можно создать ими большой момент количества движения (кинетическую энергию) и, опираясь на них, а руками о перекладину, возможно выше поднять ОЦМ тела и технически правильно выполнить элемент.
Тело гимнаста может перемещаться в пространстве по прямой линии в различных направлениях или совершать вращательные движения вокруг поперечной, продольной, передне-задней осей. Основу всех перемещений составляют вращательные и маховые Движения звеньев тела в суставах. Эти движения имеют ряд особенностей: звенья тела могут двигаться одно относительно другого, два фиксированных звена — относительно третьего; несколько фиксированных относительно друг друга звеньев могут быть приняты за одно звено; туловище и ноги могут составлять кинематическую пару или систему, состоящую из двух звеньев; при мышечном сокращении в соответствии с третьим законом динамики два смежных звена могут двигаться только навстречу друг Другу со скоростями, обратно пропорциональными их моментам инерции (рис. 111).
105 На рисунке 111 дана принципиальная схема перемещения двух смежных звеньев тела при сокращении мышцы (по С.-М.А.Алекперову). АО и ОБ — звенья тела, сочлененные в суставе; АО В положение звеньев до сокращения мышцы; А\0\В\ — положение звеньев после сокращения мышцы;
F— сила тяги мышцы; F\ и F2 — составляющие силы тяги мышцы/; М — мышца, расположенная с верхней стороны сустава О; С — общий центр массы мышцы.
5.3.1. Основные понятия и законы динамики
При анализе техники динамических упражнений, наряду с*ос-новными законами динамики, пользуются общим законом сохранения энергии и его частными проявлениями: законами равенства количества движения и равенства моментов количества движения. Для того чтобы увереннее пользоваться ими, надо восстановить их в памяти.
Всякому движению тела предшествует воздействие на него внешней или внутренней (для человека и животного) силы — импульса силы, или толчка. Импульс силы задает телу определенное количество движения (К). Оно равно массе (т) тела, умноженной на приобретенную им скорость (V):
Приобретенное телом количество движения расходуется на трение, сопротивление среды, на взаимодействие с другими телами. На преодоление импульсов этих сил может израсходоваться все приобретенное от другого тела или созданное самим гимнастом количество движения. В этом проявляется закон равенства количества движения:
где К\ — заданный телу импульс силы; К2 — израсходованный импульс силы.
Закон действует и при вращательных движениях. В этом случае его именуют законом равенства моментов количества движения-В соответствии с этим законом тело, получившее определенный
106
момент количества движения в первой части упражнения, столько У^е, израсходует его и во второй части. Этим законом гимнасты широко пользуются при выполнении маховых и вращательных упражнений (обороты, перевороты, подъемы и др.). В первой части упражнения (движение книзу) они стараются накопить возможно больший момент количества движения, для того чтобы облегчить себе работу во второй части упражнения (движения кверху). С этой целью в первой части упражнения ОЦМ тела предельно удаляется от опоры и тем самым создается возможно больший момент инерции (/), развивается нужная угловая скорость (со) и, таким образом, к нижней вертикали накапливается момент количества движения (L), необходимый для успешного выполнения упражнения. Во второй части упражнения ОЦМ тела приближается к опоре (уменьшается R2) энергичным сгибанием в тазобедренных суставах. Уменьшение радиуса вращения ОЦМ тела в такой же степени влечет за собой увеличение угловой скорости во второй части упражнения (со2)- Благодаря этому тело гимнаста поднимается на высоту больше той, с которой было начато маховое упражнение.
где 1 — в первой части, 2 — во второй части упражнения.
В том случае, когда движения гимнаста выполняются в одной плоскости пространства, момент количества его движения будет определяться формулой:
Наряду с этим выполнение многих гимнастических упражнений связано с тем, что тело гимнаста последовательно, а в ряде случаев и одновременно, вращается в нескольких плоскостях пространства. Более того, при вращении тела в какой-либо одной из плоскостей отдельные его звенья могут выполнять движения одновременно в разных плоскостях пространства. Тогда суммарный момент количества движения (импульс силы, кинетический момент) будет равен моментам количества движения по всем осям вращения:
Законы равенства количества движения и момента количества Движения являются частными проявлениями всеобщего закона сохранения энергии.
5.3.2. Отталкивание и приземление
Выполнение многих гимнастических упражнений связано с активными отталкиваниями и приземлениями. Их технически правильное выполнение существенно влияет на качество исполнения Упражнений.
107
Отталкивание заключается в активном удалении ОЦМ тела или отдельных его звеньев от опоры. Энергия отталкивания может использоваться для перехода тела из более низкого в более высокое опорное положение, из опорного — в безопорное, для создания вращательного импульса и др. Отталкиваться можно с места, с разбега, с размахивания, руками, ногами, плечами и другими звеньями тела.
Импульс силы при отталкивании создается за счет активных мышечных усилий ног, рук, туловища и реакции опоры. Он задает телу количество движения, равное произведению его массы (т) на модуль начальной скорости (г>). Поскольку масса тела гимнаста — величина постоянная, то получается, что высота вылета ОЦМ тела (Я) зависит от его начальной скорости. Чем больше импульс силы и чем ближе направление его вектора к вертикали (sin 90° = = 1; если угол а больше или меньше 90°, то sina< 1), тем выше подъем ОЦМ тела после отталкивания.
где Н — высота вылета ОЦМ тела; v— его начальная скорость в момент отрыва от опоры; a — угол между горизонталью и направлением вектора скорости.
Величину начальной скорости (v) определяют: а) степень нарастания усилий в фазе активного отталкивания; б) угловая скорость разгибания ног в рабочих суставах (чем меньше угол сгибания, тем больше скорость); в) длительность отталкивания — чем она дольше, тем меньше начальная скорость вылета, а следовательно, и его высота; г) упругие свойства опоры (величина реакции опоры); д) угол постановки ног (рук, других звеньев тела) на опору в месте отталкивания — чем он ближе к вертикали, тем лучше; е) величина боковых колебаний прилагаемых усилий — чем она меньше, тем лучше; ж) положение туловища по отношению к вертикали — лучше ближе к ней.
Приземление — это одно из сложных и ответственных для гимнаста упражнений. Его технически правильное выполнение существенно украшает выполненную комбинацию или опорный прыжок, исключает возможность травматических повреждений. Поэтому гимнасты стараются завершить свою комбинацию сложными и красивыми соскоками с большой амплитудой полета и точным приземлением. Во время приземления погашается скорость, а следовательно, и количество движения, накопленное телом к моменту приземления, и сохраняется устойчивое равновесие.
При погашении скорости движения гимнаст может испытывать значительные по величине перегрузки. Их величина пропор-
108
циональна быстроте замедления скорости движения ОЦМ тела книзу. Частые приземления могут отрицательно повлиять на работоспособность гимнастов. Они вызывают «болтанку» внутренних подвижных органов и раздражение интерорецепторов, заложенных в брызжейке и в самих органах, в стенках кровеносных сосудов нижней половины тела, а также в рецепторных приборах вестибулярного анализатора и др. Перегрузку испытывает и опорно-двигательный аппарат гимнаста. Ударные нагрузки быстро утомляют мышцы ног, вызывают в них болевые ощущения.
Во время приземления нагрузка на опорно-двигательный аппарат, особенно на ноги, иногда достигает больших величин. Например, после выполнения курбета она может колебаться в пределах 340 — 500 кг. При выполнении многих упражнений гимнасту приходится приземляться не на ноги, а на руки. В этом случае опорно-двигательный аппарат рук подвергается нагрузке в 250 — 300 кг и более.
Кинетическая энергия, накопленная к моменту приземления, погашается за счет использования рессорных свойств опорно-двигательного аппарата и погашения ее самой опорой. Поэтому чем хуже техника приземления и жестче опора, на которую приземляется гимнаст, тем больше нагрузка на его опорно-двигательный аппарат, тем больше и другие отрицательные влияния.
Сохранение равновесия в опорной фазе приземления зависит от формы полета тела относительно траектории движения его ОЦМ, направления и скорости вращения тела вокруг ОЦМ; от способности гимнаста своевременно исправить неточность приземления за счет специальных движений руками, головой, туловищем; от силы мышц ног.
Точность приземления зависит и от правильного выполнения элемента, предшествующего соскоку, и, главным образом, от самого соскока, техники приземления. При ее нарушении гимнаст может потерять равновесие с перемещением тела вперед, назад и в стороны. Для того чтобы избежать этих ошибок и сделать приземление технически правильным и красивым, надо соблюдать следующие основные правила:
Чем выше высота полета ОЦМ тела, тем глубже и продолжительнее должно быть приседание. Чем больше скорость вращения тела вокруг одной или нескольких осей одновременно, тем дальше от проекции ОЦМ тела на опору ставятся пальцы ног в соответствующую сторону в зависимости от направления вращения тела к моменту приземления. При большой горизонтальной скорости ноги ставятся впереди от проекции ОЦМ тела. Для того чтобы устойчиво приземляться, нужно, еще находясь в полете, постараться выпрямиться, незначительно согнуться в тазобедренных суставах и слегка ссутулиться в грудной части.
109
Ноги при этом должны быть выпрямлены или почти выпрямлены, стопы оттянуты, пальцы ног согнуты, руки подняты вверх — в стороны. Приземление в выпрямленном положении и особенно в прогнутом крайне опасно!
4. Человек ориентируется в пространстве лучше всего в том случае, когда находится в вертикальном положении теменем вверх. Поэтому чем раньше гимнаст сможет выпрямиться в полете, тем лучше он будет ориентироваться в пространстве, технически правильнее приземляться, а следовательно, и класс исполнения соскока будет выше.
5.3.3. Реактивное движение и реактивная сила (реакция опоры), хлестовое движение
При выполнении многих гимнастических упражнений, особенно на снарядах, гимнасту приходится учитывать их упругость, эластические (рессорные) свойства. Более того, для эффективного выполнения упражнений они специально стараются вызвать «реактивное движение» снаряда или опорной части собственного опорно-двигательного аппарата, а чаще того и другого одновременно; затем используют свою реакцию опоры для облегчения выполнения упражнения в соответствии с третьим законом динамики.
Реактивное движение — это изменение формы снаряда или другой опорной поверхности (помост для вольных упражнений, акробатическая дорожка) под воздействием количества движения, накопленного телом гимнаста до момента отталкивания от нее, например, при наскоке на гимнастический мостик, приземлении на акробатическую дорожку, воздействии на гриф перекладины, жерди брусьев.
Реактивное движение можно вызвать и в собственном опорно-двигательном аппарате в виде натяжения мышц, связок, суставных сумок, сжатия или натяжения межпозвоночных хрящей под воздействием мышц-антагонистов, веса тела или отдельных его звеньев, момента инерции одних звеньев тела по отношению к другим, выполняющим опорную функцию. Однако реактивное движение снаряда (любой упругой опорной поверхности) в силу своей упругости в соответствии с третьим законом динамики окажет обратное воздействие на тело гимнаста с такой же силой, с какой он вызвал реактивное движение. При технически правильном отталкивании происходит сложение двух сил: силы отталкивания гимнаста от опоры и реактивной силы самого снаряда.
Реактивная сила (реакция опоры) — это воздействие опоры на тело гимнаста. Такой силой могут обладать также натянутые мышцы, связки и другие части опорно-двигательного аппарата. Реактивные силы снаряда и собственного опорно-двигательного аппарата, особенно при их одновременном действии, помогают
110
гимнасту выполнить упражнение технически более правильно, эффективно, с меньшими затратами мышечной энергии на основную часть упражнения. Воздействие реактивной силы особенно наглядно можно проследить при выполнении
упражнений на батуте, при отталкивании от пружинного мостика. Ее неумелое использование затрудняет выполнение упражнения.
Величина воздействия реакции опоры на опорно-двигательный аппарат гимнаста определяется с помощью динамографических платформ. Оцениваются вертикальная и горизонтальная составляющие реакции опоры.
Величина реактивного движения (х) снаряда измеряется изменением деформируемой его части по отношению к исходному уровню (рис. 112).
Реактивная сила (Р) измеряется произведением коэффициента жесткости деформируемой части снаряда (с) на величину ее изменения (х):
Р = -сх.
Сила реакции опоры при отталкивании может превышать вес спортсмена в 5 —6 раз. Нагрузка на голеностопный сустав в вольных упражнениях ведущих гимнастов составляет 700 — 800 кг в течение 0,09 — 0,11 с. Степень воздействия реактивных сил возрастает с увеличением числа звеньев тела, активно участвующих в движении (отталкивание ногами в сочетании с разгибанием спины и взмахом рук).
Хлестовое (бросковое) движение — это такое волнообразное движение тела, когда в процессе маха ноги совершают колебательные движения относительно туловища: они то отстают от него, то обгоняют, то снова отстают. В этом случае происходит перераспределение энергии за счет последовательного включения в работу соответствующих групп мышц. Чаще наблюдается такое чередование: в начале маха ноги отстают от туловища, при этом натягиваются мышцы передней поверхности тела, затем, за счет активного сокращения этих мышц, ноги обгоняют туловище, а к концу Движения вновь отстают от него. При таком характере движений происходит увеличение количества движения, приобретаемого ногами. Ноги в конечной точке маха обладают наибольшим моментом количества движения. В этом случае руками оказывается мощное давление на снаряд, и тело, как бы опираясь на две точки опоры (руки и ноги), получает возможность подняться выше относительно снаряда (соскок махом вперед на перекладине, кольцах и др.).
111
5.3.4. Вращательные движения
При выполнении многих динамических упражнений можно создать условия для вращательных движений тела гимнаста в одной, двух и даже в трех плоскостях пространства одновременно. Вращательный импульс (момент количества движения) создается как на опоре, так и в условиях безопорного положения тела. Вращательный импульс, если он создан на опоре, может быть усилен, когда тело перейдет в безопорное положение. Так чаще всего и поступают гимнасты.
В опорном положении тела вращательные движения могут выполняться на ногах, на руках, вокруг продольной, поперечной и передне-задней осей. Простейшими из них являются повороты на месте: направо, налево, кругом, повороты с подскоком на 180°, 360° и более градусов; перевороты и сальто вперед, назад и в стороны.
В технике поворота выделяются две части. В первой гимнаст, активно взаимодействуя с опорой, поворачивает («скручивает») незакрепленную часть тела, задает ей необходимый момент количества движения. Во второй части при выполнении поворота без подскока гимнаст освобождает от опоры ногу, разноименную повороту, приставляет ее к опорной ноге и этим завершает поворот; в поворотах же с подскоком гимнаст отталкивается от опоры и уже в безопорном положении вовлекает в поворот опорную часть тела за счет энергии, накопленной поворачивающейся частью тела. Выполнение поворотов начинается с наиболее удаленных от опоры звеньев тела. Звено, закрепленное на опоре, не поворачивается относительно исходного положения до момента отрыва тела от опоры (повороты на 180°, 360° и более, повороты махом вперед на перекладине, кольцах и др.). Связь с опорой прекращается после того, как звенья тела, удаленные от опоры, приобрели момент количества движения, достаточный для того, чтобы обеспечить успешное выполнение заданного упражнения. Величина поворота зависит от прочности сцепления тела с опорой, физических возможностей и технического мастерства гимнаста. Например, в поворотах вокруг продольной оси тела на 180°, 360° и более с подскоком момент инерции ног до их отрыва от опоры неизмеримо больше момента инерции туловища, так как ноги прочно соединены с опорой (с землей); момент количества движения ног больше момента количества движения туловища: /ног > ^лоти&> Аюг >^туловища- Благодаря этому создаются условия для поворота туловища вокруг его продольной оси. После же отрыва ног от опоры, наоборот, момент инерции ног будет меньше момента инерции туловища, момент количества движения ног меньше момента КОЛИЧеСТВа ДВИЖеНИЯ ТуЛОВИЩа: /ног < /тул0вища; Аюг < ^туловиша-
При этом создаются условия для поворота ног: опорой для это-112
го служит момент количества движения, приобретенный туловищем.
При поворотах вокруг поперечной оси тела и параллельных ей осей вращательный импульс создается за счет того, что гимнаст, переходя из исходного положения в конечное, описывает вращательные движения различными звеньями тела относительно этих осей суставов: руки — вокруг плечевой; бедро — вокруг коленной; голова с туловищем — вокруг голеностопной. Произведение угловой скорости каждого звена на соответствующий момент инерции образует момент количества движения каждого из них. Общий момент количества движения тела складывается из количества движения его звеньев.
Когда отталкивание осуществляется не по вертикали, а с отклонением тела назад или вперед, сила тяжести (Р) создает вращательный момент вокруг центра опоры, что облегчает вращательное движение тела. Высота же полета после отталкивания в том и другом случаях снижается. Поэтому совершенствование техники сальто вперед и назад сводится в основном к выбору таких исходного положения и направления активных усилий, при которых создаются максимальная скорость вылета тела по вертикали и в то же время необходимый для вращения момент количества движения. Наиболее эффективно можно оттолкнуться с предварительным разгоном ОЦМ тела под некоторым углом к направлению толчка (рис. 113). После отрыва тела от опоры поступательные и вращательные движения осуществляются в безопорном положении.
В безопорном положении тело гимнаста представляет собой свободную кинематическую цепь и может совершить поступательные и вращательные движения на основе законов кинематики.
Поступательным движением твердого тела называется такое движение, при котором точки тела движутся по одинаковым па-
113
раллельно расположенным траекториям и в каждый данный момент времени имеют равные скорости и ускорения. Поэтому о поступательном движении тела гимнаста можно судить по движению его ОЦМ. При выполнении гимнастических упражнений поступательные движения сочетаются с вращательными.
Вращательное движение — это такое движение твердого тела, при котором все или, по крайней мере, две точки, лежащие на оси вращения, остаются неподвижными. В гимнастике к таким движениям относятся сальто, повороты и их сочетания. Основными характеристиками этого вида движений являются угловая скорость и угловое ускорение.
При рассмотрении возможности выполнения вращательных движений в безопорном положении необходимо учитывать, что тело гимнаста в этом случае обладает постоянным моментом количества движения: L= const. Из этого следует, что траектория движения ОЦМ тела определяется лишь величиной и направлением скорости вылета в безопорное положение; нельзя ни уменьшить, ни увеличить и количество движения, его можно лишь перераспределить между отдельными звеньями тела.
В безопорном положении тело гимнаста всегда вращается вокруг оси, проходящей через его ОЦМ. Поэтому любая сила, линия действия которой не проходит через ОЦМ, создает вращательный момент относительно оси, проходящей через ОЦМ тела. Поворот начинается с концевых звеньев тела, потому что они обладают наибольшей подвижностью. В том случае, когда сила действует по линии, проходящей через ОЦМ тела, момента не создается, так как ее плечо равно нулю. В сложных вращательных движениях на тело одновременно могут действовать несколько моментов инерции, в этом случае их общий момент инерции будет равен сумме действующих моментов инерции:
При выполнении вращательных движений приходится учитывать также и то, что звенья тела, как уже отмечалось, могут перемещаться одно относительно другого только в противоположные стороны навстречу друг другу со скоростями, обратно пропорциональными их моментам инерции. Так, например, при попытке выполнить сальто вперед согнувшись за счет активных движений туловищем и поднятых вверх рук туловище повернется вокруг своей оси на угол в 45°, а ноги навстречу ему — на 90°. Так произойдет потому, что момент инерции туловища в этом случае оказывается в два раза большим по сравнению с моментом инерции ног. При выполнении этого же упражнения, но только за счет активных движений одних рук, соотношение моментов инерции рук и остальной части тела в вытянутом положении равно 1 : 12, а в группировке — 1:4 (по С.-М.А.Алекперову).
114
Из сказанного логически вытекает, что только за счет движений одних рук существенного вращения тела добиться нельзя. Руками можно только подправить положение тела в пространстве с целью более правильного приземления, большего сделать не представляется возможным из-за того, что при выполнении гимнастических упражнений тело гимнаста в безопорном положении находится не более 1,5 с.
Выгодное для поворота тела соотношение моментов инерции взаимодействующих звеньев создается в том случае, если туловище и ноги расположить под углом 90 — 100°. Тогда величина момента инерции ног относительно продольной оси туловища будет приблизительно в 7 —8 раз больше момента инерции туловища относительно его продольной оси, а последний — примерно во столько же раз больше момента инерции ног относительно их продольной оси. Это позволяет выполнить повороты вокруг продольной оси туловища или ног. В первом случае для создания вращательного импульса в качестве опоры используются ноги. Момент их инерции, учитывая расстояние их ОЦМ до продольной оси туловища, значительно превосходит момент инерции туловища: /ног » Луловиша- Это дает возможность, «отталкиваясь» от ног, повернуть туловище вокруг его продольной оси. После этого тело разгибается в тазобедренных суставах. При этом ноги «догоняют» туловище, отнимая у него часть накопленного момента количества движения.
115
Подобным же образом выполняется поворот вдоль продольной оси ног, так как момент их инерции становится значительно мень-
ше момента инерции туловища: Уног « /туЛовиша- После создания вращательного импульса гимнаст может снова сгибаться и разгибаться, выполняя поворот вокруг продольной оси туловища или ног. Количество поворотов, которые гимнаст может выполнить в безопорном положении, зависит от запаса высоты, а следовательно, и времени. В процессе поворота та часть тела, которая служила опорой для поворачивающейся части, будет догонять ее и отнимать часть приобретенных ею момента количества движения или кинетической энергии (рис. 114, а, б).
В безопорном положении можно выполнять не только вращательные движения во всех плоскостях пространства, но и перемещаться вверх-вниз при отталкивании вверх под углом 90° к горизонтали и по параболе — при отталкивании под различными углами при наличии горизонтальной составляющей скорости ОЦМ тела.
В безопорном положении можно изменять скорость вращения тела путем изменения позы. Например, при вращении вокруг продольной оси тела сгибание тела, отведение рук в стороны приводят к замедлению скорости вращения; разгибание тела, приведение рук — к ее увеличению.
5.3.5. Маховые упражнения
В процессе ходьбы, бега, при выполнении многих бытовых, трудовых и спортивных двигательных действий человек совершает маховые движения руками, ногами и всем телом. Для гимнастики наибольший интерес представляют маховые упражнения, выполняемые на гимнастических снарядах. Эти упражнения в отличие от силовых характеризуются широким использованием действия силы тяжести и инерции тела гимнаста или отдельных его звеньев.
Для того чтобы умело использовать силу тяжести и инерцию тела при выполнении маховых упражнений, надо рассмотреть закономерности взаимодействия их с внутренними силами гимнаста. Это можно сделать, если маховое движение представить в виде принципиальной схемы по С.-М.А.Алекперову (рис. 115). Здесь гимнаст из исходного положения I перемещается в конечное положение II. В исходном положении ОЦМ его тела находится в точке С. В этом случае вес тела может быть разложен на два составляющих его компонента: тангенциальный Рхи радиальный Р2.
Тангенциальный компонент создает вращательный момент относительно оси О — точки опоры. Его величина равна произведению Рхи радиуса R(расстояние от опоры до ОЦМ тела), но так как Рх = Р- sin W, где угол Wявляется степенью отклонения тела от вертикального положения, то вращательный момент силы тяжести МРравен произведению веса тела гимнаста Р и величины угла, характеризующей степень отклонения его тела от вертикаль-
116
ного положения (sin W). Чем меньше этот угол, тем меньше и его численная величина:
МР = PR.
Величина вращательного момента меняется в зависимости от радиуса вращения ОЦМ тела (ОС) и величины угла (W). Наибольшее значение она имеет при горизонтальном положении тела (МР = PR), так как sin 90" = 1, а после того, как тело переместится в вертикальное положение, будет равна нулю (sin 0° = 0).
Во второй части упражнения после прохождения телом вертикали направление действия силы Рхизменяется на противоположное: она действует по ходу часовой стрелки и, следовательно, имеет отрицательный знак с наибольшей величиной в горизонтальном положении тела гимнаста. Затем по мере приближения тела к вертикали над снарядом (при выполнении большого оборота) ее величина уменьшится до нуля и начнет снова возрастать До максимума по мере приближения к горизонтальному положению, но теперь уже с положительным знаком, так как ее действие будет направлено против часовой стрелки.
Радиальный компонент силы тяжести Р2всегда действует по радиусу и оттягивает или прижимает тело к опоре. Величина этой силы зависит от угла отклонения тела от вертикального положения: чем меньше этот угол, тем больше ее величина. Наибольшее значение она имеет при вертикальном положении тела (Р2 = Р), наи-
117
меньшее — при горизонтальном (Р2= 0); в секторе ниже горизонтали она направлена от оси вращения, а выше горизонтали — к оси вращения. В вертикальном положении под снарядом действие Р2совпадает по направлению с действием силы тяжести. Но поскольку это маховое движение, то к действию этих сил присоединяется еще и центробежная сила (F). Ее величина прямо пропорциональна массе тела (т), квадрату линейной скорости ОЦМ тела (v) и обратно пропорциональна радиусу ОЦМ (R):
Действие сил на тело гимнаста в вертикальном положении может превышать его вес в 2 —5 раз, особенно когда выполняются хлестовые движения ногами. Такая большая нагрузка на опорно-двигательный аппарат требует обеспечения прочного хвата за снаряд и надежной страховки. Срывы со снаряда могут сопровождаться падением на голову с тяжелыми травматическими последствиями.
Использование изложенных выше закономерностей и закона равенства моментов количества движения делает возможным выполнение сложных маховых упражнений и облегчает двигательные действия гимнаста. Для этого в первой части упражнения ОЦМ тела как можно дальше удаляется от опоры и тем самым создается возможно больший момент инерции в исходном положении для выполнения упражнения, а в процессе маха — и наибольший момент количества движения. Во второй части упражнения (после вертикали) ОЦМ тела приближается к оси вращения путем сгибания туловища в тазобедренных суставах или каким-либо другим способом. В этом случае уменьшение радиуса R2приводит соответственно к увеличению угловой скорости (02, а следовательно, и к подъему ОЦМ тела на высоту II, превосходящую ту, с которой начато маховое движение I.
При выполнении многих маховых упражнений для достижения наибольшего эффекта и облегчения действий гимнаста приходится перераспределять моменты количества движения туловища и ног. Даже в таких простых движениях, как соскоки махом вперед на перекладине и кольцах, приходится в первой части упражнения, при подходе тела к вертикали, увеличивать угловую скорость верхней части туловища, а ног — замедлять. Во второй части упражнения, после прохождения вертикали, наоборот, увеличивать угловую скорость ног за счет туловища, а значит, и их момент количества движения. В конце махового движения, «опираясь» на ноги, на приобретенный ими момент количества движения или кинетическую энергию и, следовательно, замедляя их угловую скорость, а также отталкиваясь от перекладины руками, можно сделать рывковое движение и поднять ОЦМ тела на необходимую
118
высоту. Такое перераспределение момента количества движения между звеньями тела позволяет выполнить соскок более высоким и красивым.
Принцип перераспределения момента количества движения между звеньями тела положен в основу техники исполнения многих маховых упражнений.
5.3.6. Силовые упражнения
Силовые упражнения подразделяются на динамические и статические. Они требуют от гимнастов хорошо развитой мышечной силы.
Динамические силовые упражнения в соответствии с правилами соревнований выполняются медленно, без использования инерции движущегося звена или тела в целом.
В зависимости от характера выполняемого упражнения мышцы осуществляют преодолевающую или уступающую работу. В преодолевающем режиме работы движение происходит из более низкого в более высокое положение и сопровождается преодолением веса тела гимнаста или его отдельных звеньев. В этом случае вращательный момент силы превосходит противоположно направленный момент, вызванный тяжестью тела или поднимаемого звена тела.
Медленное выполнение силовых упражнений в соответствии с гимнастическим стилем требует большей затраты энергии по сравнению с выполнением их в оптимальном темпе. Величина же затрат мышечной энергии с чисто механической точки зрения зависит только от сопротивления силы тяжести и высоты подъема перемещаемой части тела. Это несоответствие является еще одним свидетельством того, что мышцы работают не только как механические двигатели, но и как несравнимо более сложные биологические образования, управляемые нервной системой и сознанием гимнаста.
В уступающем режиме работы мышц движение тела или его отдельных звеньев происходит из более высокого в более низкое положение. Сила тяжести перемещаемой части тела облегчает движение. В этом случае вращательный момент мышечной тяги меньше вращательного момента перемещаемой части тела. Улучшаются и механические условия работы мышц, возрастают их силовые возможности, так как они постепенно удлиняются. В этом режиме работы мышцы способны развивать усилия на 50 — 70% большие, чем при преодолевающем. По мере уменьшения напряжения мышц Улучшаются условия кровоснабжения и энергетического обеспечения их работы.
Статические силовые упражнения характеризуются удержанием статической позы в течение 2 —4 с. Выполнение многих упражнений из этой группы требует большой статической мышечной силы.
119
По мере подъема ОЦМ тела над площадью опоры ухудшаются условия для сохранения равновесия, и, чтобы не потерять его, приходится прилагать дополнительные мышечные усилия. Статические упражнения сопровождаются увеличением давления в легких (натуживание), в брюшной полости, затруднением притока крови к сердцу и работающим мышцам, а следовательно, вызывают нарушение обменных процессов, снижение регуля-торной деятельности центральной нервной системы. В дозировании этих упражнений необходима осторожность. В то же время надо иметь в виду, что при развитии мышечной силы они оказываются значительно более эффективными по сравнению с динамическими упражнениями. 5.4. Общие правила анализа техники исполнения гимнастических упражненийПри анализе техники гимнастических упражнений соблюдаются следующие правила: а) указывается, к какой группе относится изучаемое упражнение (элемент) — к группе динамических или статических, дается его краткая характеристика и указывается основное назначение; б) уточняются основные задачи упражнения, объясняется, из какого исходного и в какое конечное положение должен прийти гимнаст в результате выполнения упражнения; в) техника исполнения упражнения объясняется по отдельным частям и фазам. Почти во всех упражнениях в зависимости от характера действия силы тяжести тела или отдельных звеньев различают две части: в первой части (путь книзу) сила тяжести содействует движению; во второй (путь кверху) — наоборот, оно препятствует движению, затрудняет выполнение этой части. Каждую часть упражнения принято делить на отдельные более мелкие, но относительно самостоятельные части — фазы. Для выделения фаз служат следующие основания: а) структура движений в каждой фазе должна отличаться от структуры движений в других фазах; б) в каждой фазе должна решаться одна, специфическая только для этой фазы, главная задача; в) работа мыши, физиологическое и психологическое обеспечение движений в одной фазе должно отличаться от других фаз. О технической правильности выполнения упражнения судят по степени эффективности, выгодности или невыгодности использования закономерностей механики, анатомии, физиологии и психологии. При объяснении техники исполнения динамических упражнений рассматриваются характер взаимодействия внешних и внутренних сил, масса тела или его отдельных звеньев, скорость, ускорение, момент инерции, количество и момент количества дви- жения и другие параметры, а кроме того, особенности работы мышц, физиологическое и психологическое обеспечение успешного выполнения изучаемого упражнения в целом. В каждой фазе рассматриваются величина нагрузки, анатомические условия работы мышц в отдельных сочленениях, степень их напряжения, угол тяги и др. После объяснения качественной биомеханической стороны техники изучаемого упражнения переходят к характеристике физиологического обеспечения работающих и создающих рабочую позу мышц; затем объясняют особенности управления движениями со стороны ЦНС, информационное и энергетическое обеспечение. Объяснение техники исполнения упражнения завершается рассмотрением психологического обеспечения движений: концентрация, распределение и переключение внимания, запоминание последовательности движений, проявление волевых усилий, усвоение закономерностей, лежащих в основе технически правильного исполнения упражнения, и др. Объяснение должно быть кратким, образным. Законы механики, анатомии, физиологии, психологии, лежащие в основе техники движений, излагаются в доступной для занимающихся форме. Сначала объясняется главное, а затем постепенно и детали техники движений. Анализ техники исполнения изучаемого упражнения должен завершиться обобщением, что дает возможность познать его как единое целое. |
|
|