маткад. МИМЭП_лаб_практикум в Mathcad. Математическое и имитационное моделирование экономических процессов
Скачать 4.96 Mb.
|
1 МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ Федеральное государственное автономное образовательное учреждение высшего образования Национальный исследовательский Томский государственный университет Факультет инновационных технологий Кафедра информационного обеспечения инновационной деятельности А.А. Мицель МАТЕМАТИЧЕСКОЕ И ИМИТАЦИОННОЕ МОДЕЛИРОВАНИЕ ЭКОНОМИЧЕСКИХ ПРОЦЕССОВ В MATHCAD Лабораторный практикум ТОМСК – 2016 2 Мицель А.А. Математическое и имитационное моделирование экономических процессов в Mathcad Томск: Изд-во ТГУ, 2016. –141с. В пособии приведено описание 12 лабораторных работ по дисциплине «Математическое и имитационное моделирование экономических процессов». Первые 6 работ связаны с детерминированными процессами – производственные функции, функции полезности, балансовые модели, потоки платежей, доходность финансовой операции, кредитные расчеты. Вторая часть работ связана с имитационным моделированием и включает следующие работы: генераторы случайных чисел с равномерным распределением, генераторы случайных чисел с заданным законом распределения, метод статистических испытаний Монте-Карло, биржевой игрок, способы построении моделирующих алгоритмов систем массового обслуживания, моделирование процессов обслуживания заявок в условиях отказов. К каждой лабораторной работе дана краткая теория, включающая основные понятия и описание существующих в данной области решений, приводятся примеры выполнения заданий в пакете Mathcad. Учебное пособие предназначено для студентов бакалавриата направления подготовки 09.03.03 – прикладная информатика (профиль – прикладная информатика в информационной сфере). Кроме того, это пособие может быть использовано студентами других смежных экономических специальностей. 3 СОДЕРЖАНИЕ 1. Лабораторная работа № 1. Производственные функции ................................................5 1.1. Однофакторная модель ..........................................................................................................5 1.2. Двухфакторная модель...........................................................................................................5 1.3. Свойства производственных функций .................................................................................7 1.4. Предельные (маржинальные) и средние значения производственной функции .............8 1.5. Доход .......................................................................................................................................9 1.6. Примеры выполнения заданий в Mathcad ..........................................................................10 1.7. Варианты заданий лабораторной работы №1 ....................................................................21 2. Лабораторная работа №2. Функция полезности .............................................................22 2.1. Множество благ ....................................................................................................................22 2.2. Функция полезности и ее свойства.....................................................................................24 2.3. Предельная полезность и предельная норма замещения благ .........................................28 2.4. Оптимальный выбор благ потребителем ...........................................................................30 2.5. Варианты заданий лабораторной работы №2 ....................................................................36 3. Лабораторная работа №3. Балансовые модели ...............................................................40 3.1. Коэффициенты прямых и полных материальных заират .................................................42 3.2. Свойства матрицы прямых и полных материальных затрат .......................................44 3.3 Модель затрат труда..............................................................................................................46 Потребляющие отрасли ..........................................................................................................49 3.4. Модель фондоемкости продукции......................................................................................49 3.5 Варианты заданий лабораторной работы №3 .....................................................................51 4. Лабораторная работа № 4. Потоки платежей. Ренты.....................................................55 4.1. Потоки платежей ..................................................................................................................55 4.2. Конечная годовая рента .......................................................................................................56 4.3. Определение параметров годовой ренты ...........................................................................58 4.4. Общая рента ..........................................................................................................................59 4.5. Вечная» годовая рента .........................................................................................................60 4.6. Объединение и замена рент.................................................................................................61 4.6.Примеры решения типовых задач в Mathcad......................................................................61 4.7. Варианты заданий к лабораторной работе №4 ..................................................................68 5. Лабораторная работа № 5. Доходность финансовой операции ....................................75 5.1. Различные виды доходности операций ..............................................................................75 5.2. Учет налогов .........................................................................................................................75 5.3. Учет инфляции......................................................................................................................76 5.4. Поток платежей и его доходность ......................................................................................77 5.5. Варианты заданий по лабораторной работе №5................................................................78 6. Лабораторная работа № 6. Кредитные расчеты..............................................................83 6.1. Расходы по обслуживанию долга .......................................................................................83 6.2. Формирование погасительного фонда по более высоким процентам.............................84 6.3. Потребительский кредит и его погашение.........................................................................85 6.4. Льготные кредиты ................................................................................................................86 6.5. Варианты заданий.................................................................................................................87 7. Лабораторная работа №7. Генераторы случайных величин с равномерным распределением ..........................................................................................................................93 7.1. Общие сведения....................................................................................................................93 7.2. Моделирование случайных величин с равномерным распределением в интервале [0; 1] .......................................................................................................................................................93 7.2. Псевдослучайные числа.......................................................................................................94 7.3. Алгоритмы генераторов псевдослучайных чисел .............................................................95 4 7.4 Оценка закона распределения последовательности псевдослучайных чисел.................98 7.5. Лабораторное задание по работе №7..................................................................................98 8. Лабораторная работа №8. Генерация случайных чисел с заданным законом распределения ..........................................................................................................................101 8.1. Основные понятия и соотношения ...................................................................................101 8.2. Практическое задание ........................................................................................................104 8.3. Варианты заданий по лабораторной работе №8..............................................................105 9. Лабораторная работа №9. Метод статистических испытаний Монте-Карло .........107 9.1. Метод Монте-Карло ...........................................................................................................107 9.2. Оценка точности результатов, полученных методом .....................................................108 Монте-Карло ..............................................................................................................................108 9.3. Лабораторное задание ........................................................................................................111 10. Лабораторная работа №10. Биржевой игрок ...............................................................117 10.1 Описание модели ...............................................................................................................117 10.2. Прогон модели ..................................................................................................................118 10.3. Результаты моделирования..............................................................................................119 10.4. Задание на лаб. работу №10 ............................................................................................120 10.5. Варианты заданий лабораторной работы №10 ..............................................................121 11. Лабораторная работа № 11. Способы построения моделирующих алгоритмов систем массового обслуживания ..........................................................................................125 11.1. Поток неперекрывающихся заявок.................................................................................125 11.2. Поток перекрывающихся заявок.....................................................................................126 11.2.1. Проводка заявок без приоритета..................................................................................126 11.2.2. Проводка заявок с приоритетом...................................................................................127 11.3. Задания по лабораторной работе №11............................................................................132 12. Лабораторная работа № 12. Моделирование процессов обслуживания заявок в условиях отказов .....................................................................................................................133 12.1 Описание модели ...............................................................................................................133 12.2. Задание по лабораторной работе №2..............................................................................138 ЛИТЕРАТУРА .........................................................................................................................140 5 1. Лабораторная работа № 1. Производственные функции 1.1. Однофакторная модель Производственная функция - это функция, независимая переменная которой принимает значения объемов затрачиваемого или используемого ресурса (фактора производства), а зависимая переменная - значения объемов выпускаемой продукции ) a , x ( f y = (1.1) где 0 y , 0 x ≥ ≥ , a - в е к т о р п а р а м е т р о в . В микроэкономической теории принято считать, что y - это максимально возможный объем выпуска продукции, если ресурс затрачивается или используется в количестве x единиц. ПФ могут иметь разные области использования. Принцип "затраты - выпуск" может быть реализован как на микро-, так и на макроэкономическом уровне. Сначала остановимся на микроэкономическом уровне. Например, ПФ b ax y = может быть использована для описания взаимосвязи между величиной затрачиваемого или используемого ресурса x в течение года на отдельном предприятии (фирме) и годовым выпуском продукции y этого предприятия (фирмы). В роли производственной системы здесь выступает отдельное предприятие (фирма) - имеем микроэкономическую ПФ (МИПФ). На микроэкономическом уровне в роли производственной системы может выступать также отрасль, межотраслевой производственный комплекс. ПФ может быть использована для описания взаимосвязи между годовыми затратами труда в масштабе региона или страны в целом и годовым конечным выпуском продукции (или доходом) этого региона или страны в целом. Здесь в роли производственной системы выступает регион или страна в целом (точнее хозяйственная система региона или страны) – имеем макроэкономический уровень и макроэкономическую ПФ (МАПФ). МАПФ строятся и активно используются для решения всех трех типов задач (анализа, планирования и прогнозирования). На микроэкономическом уровне затраты и выпуск могут измеряться как в натуральных, так и в стоимостных единицах (показателях). Годовые затраты труда могут быть измерены в человеко-часах (объем человеко-часов - натуральный показатель) или в рублях выплаченной заработной платы (ее величина - стоимостный показатель); выпуск продукции может быть представлен в штуках или в других натуральных единицах (тоннах, метрах и т.п.) или в виде своей стоимости. На макроэкономическом уровне затраты и выпуск измеряются, как правило, в стоимостных показателях и представляют собой стоимостные (ценностные) агрегаты, т.е. суммарные величины произведений объемов затрачиваемых (или используемых) ресурсов и выпускаемых продуктов на их цены. 1.2. Двухфакторная модель Производственная функция двух переменных - это функция, независимые переменные 2 1 x , x которой принимают значения объемов затрачиваемых или используемых ресурсов, а значение функции имеет смысл величин объемов выпуска: ) a , x , x ( f ) x ( f y 2 1 = = (1.2) 6 В формуле (1.2) ) 0 y ( y ≥ - скалярная, а x - векторная величина ( 0 x ≥ ), 2 1 x , x - координаты вектора x , т.е. ) x , x ( f 2 1 есть числовая функция двух переменных 2 1 x , x . В связи с этим ПФ ) a , x , x ( f 2 1 называют двухресурсной или двухфакторной ПФ. Для отдельного предприятия (фирмы), выпускающего однородный продукт, ПФ может связывать объем выпуска (в натуральном или стоимостном выражении) с затратами рабочего времени по различным видам трудовой деятельности, различных видов сырья, комплектующих изделий, энергии, основного капитала (измеренных обычно в натуральных единицах). ПФ такого типа характеризуют действующую технологию предприятия (фирмы). При построении ПФ для региона или страны в целом в качестве величины годового выпуска Y (будем обозначать объем выпуска, или дохода, на макроуровне большой буквой) чаще берут совокупный продукт (доход) региона или страны, исчисляемый обычно в неизменных, а не в текущих ценах. В качестве ресурсов рассматривают основной капитал ( K x 1 = - объем используемого в течение года основного капитала), живой труд ( L x 2 = - количество единиц затрачиваемого в течение года живого труда), исчисляемые обычно в стоимостном выражении. Таким образом, строят двухфакторную ПФ ) a , L , K ( f y = . От двухфакторных ПФ переходят к трехфакторным. В качестве третьего фактора иногда вводят объемы используемых природных ресурсов. Для моделирования отдельного региона или страны в целом (т.е. для решения задач на макроэкономическом, а также и на микроэкономическом уровне) часто используется ПФ Кобба-Дугласа (ПФКД) 2 a 1 a 0 L K a y = , где 2 1 0 a , a , a - параметры ПФ. Это положительные постоянные (часто 1 a и 2 a таковы, что 1 a a 2 1 = + ). ПФКД принадлежит к классу мультипликативных ПФ. Линейная ПФ (ЛПФ) имеет вид: 2 2 1 1 0 x a x a a y + + = (двухфакторная). ЛПФ принадлежит к классу аддитивных ПФ. Переход от мультипликативной ПФ к аддитивной осуществляется с помощью операции логарифмирования. Для двухфакторной мультипликативной ПФ 2 a 2 1 a 1 0 x x a y = этот переход имеет вид: 2 2 1 1 0 x ln a x ln a a ln y ln + + = . Полагая ; w y ln = 2 2 1 1 v x ln ; v x ln = = получаем аддитивную ПФ 2 2 1 1 0 v a v a a ln w + + = Выполняя обратный переход, из аддитивной ПФ получим мультипликативную ПФ. Если сумма показателей степени в ПФ Кобба- Дугласа 2 a 1 a 0 L K a y = равна единице ( 1 a a 2 1 = + ), то двухфакторная модель может быть представлена как однофакторная 1 a 0 k a z = где L y z = - производительность труда; L K k = - капиталовооруженность труда. 7 1.3. Свойства производственных функций ПФ должна удовлетворять ряду свойств: 1. 0 ) 0 , x ( f ) x , 0 ( f ; 0 ) 0 , 0 ( f 1 2 = = = 2. )); k ( x ), k ( x ( ) k ( x ; 2 , 1 i ; 0 x ) x ( f )); 0 ( x ( f )) 1 ( x ( f ) 0 ( x ) 1 ( x 2 1 i = = > ∂ ∂ > ⇒ > ∀ 3. ) 2 , 1 i ( ; 0 x x ) x ( f ; 0 x ) x ( f 2 1 2 2 i 2 = ≥ ∂ ∂ ≤ ∂ ∂ 4. ) x , x ( f t ) tx , tx ( f 2 1 p 2 1 = 5. Матрица Гессе, составленная из вторых производных производственной функции ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ = Γ 2 2 2 1 2 2 2 1 2 2 1 2 x f x x f x x f x f отрицательно определена. Свойство 1 означает, что без ресурсов (даже при отсутствии хотя бы одного из ресурсов) нет выпуска. Свойство 2 означает, что с ростом затрат хотя бы одного ресурса объем выпуска растет. Положительность первой частной производной означает, что с ростом затрат одного ресурса при неизменном количестве другого ресурса объем выпуска растет. Свойство 3 (вторая частная производная ПФ неположительна) означает, что с ростом затрат одного (1-го) ресурса при неизменном количестве другого ресурса величина прироста выпуска на каждую дополнительную единицу 1-го ресурса не растет (закон убывающей эффективности). Неотрицательность второй смешанной производной означает, что при росте одного ресурса предельная эффективность другого ресурса возрастает. Если выполнены условия 3, то график ПФ есть поверхность, расположенная в неотрицательном октанте 0 y , 0 x , 0 x 2 1 ≥ ≥ ≥ трехмерного пространства и выпуклая вверх. Вообще геометрический образ ПФ должен прежде всего ассоциироваться с выпуклой горкой, крутизна которой убывает, если точка (х 1 х 2 ) уходит в плоскости Ох 1 х 2 на "северо- восток". Свойство 4 означает, что ПФ является однородной функцией (ОФ) степени 0 p > . При 1 p > с ростом масштаба производства в t раз (число 1 t > ), т.е. с переходом от вектора x к вектору tx , объем выпуска возрастает в ) t ( t p > раз, т.е. имеем рост эффективности производства при росте масштаба производства. При 1 p < имеем падение эффективности производства при росте масштаба производства. При 1 p = имеем постоянную эффективность производства при росте его масштаба (или имеем независимость удельного выпуска от масштаба производства - в английской терминологии constant returns to scale). Свойство 5 означает, что ПФ является вогнутой (выпуклой вверх) функцией. Для ПФКД 2 a 2 1 a 1 0 x x a y = ( 1 a a 2 1 = + ) свойства 1-4 выполняются. 8 Для ЛПФ 2 2 1 1 0 x a x a a y + + = ( 0 a , 0 a , 0 a 2 1 0 > > > ) свойства 1 (при 0 a 0 = ) и свойство 4 не выполняются. Множество точек (линия) q ℓ уровня ) x , x ( f q 2 1 = ( 0 q > - действительное число) ПФ ) x , x ( f y 2 1 = называется изоквантой или линией уровня ПФ. Иными словами, линия уровня q - это множество точек, в котором ПФ постоянна и равна q |