Главная страница
Навигация по странице:

  • Гуморальный иммунитет Клеточный иммунитет

  • Макрофаги

  • Плазматические клетки

  • Перициты

  • Классификация хрящевых тканей

  • 2 дифферона клеток

  • Межклеточное вещество кости

  • Виды пластинчатой костной ткани

  • Методы исследования в гистологии. Основные принципы и этапы приготовления гистологических препаратов


    Скачать 0.74 Mb.
    НазваниеМетоды исследования в гистологии. Основные принципы и этапы приготовления гистологических препаратов
    АнкорGista_100.docx
    Дата29.01.2017
    Размер0.74 Mb.
    Формат файлаdocx
    Имя файлаGista_100.docx
    ТипДокументы
    #1130
    страница10 из 31
    1   ...   6   7   8   9   10   11   12   13   ...   31

    Первичный  иммунный  ответ


    Когда антиген впервые попадает в организм, его распознавание и активация иммунной системы требуют определенного времени. В этот период, называемый латентным, после связывания антигена со специфическими рецепторами лимфоидных клеток происходит их пролиферация и дифференцировка с образованием клеток памяти и эффекторных Т- и В-лимфоцитов. Последние образуют плазматические клетки, секретирующие антитела. Примерно спустя трое суток в крови можно уже обнаружить первые антитела, выработавшиеся к этому антигену. Их количество или титр, постепенно нарастает к 10- 14 дню, а затем также постепенно падает и спустя 3-4 недели в крови выявляются очень низкие концентрации антител. Эта реакция системы иммунитета на первый контакт с антигеном получила название  первичного  иммунного  ответа.

    Гуморальный иммунитет

    Клеточный иммунитет

    Опосредован антителами

    Опосредован клетками

    Клетки-эффекторы — B-лимфоциты

    Клетки-эффекторы — T-лимфоциты

    Пассивный иммунитет формируется при введении сыворотки

    Пассивный иммунитет формируется при введении лимфоцитов

    Основа антибактериального иммунитета

    Основа противовирусного, противоопухолевого, противогрибкового иммунитета

    27. Иммунитет гуморальный



    Полностью разделить клеточный иммунитет и гуморальный невозможно: в инициации образованияантител участвуют клетки, а в некоторых реакциях клеточного иммунитета важную связующую функцию выполняют антитела.

    Гуморальный иммунный ответ (образование антител) представляет собой кульминацию ряда клеточных и молекулярных взаимодействий, происходящих в определенной последовательности:

    - T-клетки распознают антиген , представленный им антигенпрезентирующими клетками , и в результате переходят в активированное состояние;

    - Tх-клетки ( хелперные T-лимфоциты ) взаимодействуют с B-клетками, которые презентируют им антигенные фрагменты;

    - активированные B-лимфоциты пролиферируют и дифференцируются в антителообразующие клетки;

    - начинается синтез антител и от их класса зависит характер последующего иммунного ответа.

    28. Макрофаги (или макрофагоциты) (от греч. makros — большой, длинный, fagos — пожирающий) — это гетерогенная специализированная клеточная популяция защитной системы организма.

    Размер и форма макрофагов варьируют в зависимости от их функционального состояния. Обычно макрофаги, за исключением некоторых их видов, имеют одно ядро. Ядра макрофагов небольшого размера, округлые, бобовидные или неправильной формы. В них содержатся крупные глыбки хроматина. Цитоплазма базофильна, богата лизосомами, фагосомами (что является их отличительным признаком) и пиноцитозными пузырьками, содержит умеренное количество митохондрий, гранулярную эндоплазматическую сеть, аппарат Гольджи, включения гликогена, липидов и др. 
      В цитоплазме макрофагов выделяют т.н. «клеточную периферию», обеспечивающую макрофагу способность передвигаться, втягивать микровыросты цитоплазмы, осуществлять эндо- и экзоцитоз. Непосредственно под плазмолеммой находится сеть актиновых филаментов диаметром 5—6 нм. Через эту сеть проходят микротрубочки диаметром 20 нм, которые прикрепляются к плазмолемме. Микротрубочки идут радиально от клеточного центра к периферии клетки и играют важную роль во внутриклеточных перемещениях лизосом, микропиноцитозных везикул и других структур. На поверхности плазмолеммы имеются рецепторы для опухолевых клеток и эритроцитов, T- и B-лимфоцитов, антигенов, иммуноглобулинов, гормонов. Наличие рецепторов к иммуноглобулинам обусловливает их участие в иммунных реакциях.

    Формы проявления защитной функции макрофагов:

    1. поглощение и дальнейшее расщепление или изоляция чужеродного материала;

    2. обезвреживание его при непосредственном контакте;

    3. передача информации о чужеродном материале иммунокомпетентным клеткам, способным его нейтрализовать;

    4. оказание стимулирующего воздействия на другие клеточные популяции защитной системы организма.

    Макрофаги имеют органеллы, синтезирующие ферменты для внутриклеточного и внеклеточного расщепления чужеродного материала, антибактериальные и другие биологически активные вещества (например: протеазы, кислые гидролазы, пироген, интерферон, лизоцим и др.)

    Количество макрофагов и их активность особенно возрастают при воспалительных процессах. Макрофаги вырабатывают хемотаксические факторы для лейкоцитов. Секретируемый макрофагами IL-1 способен повышать адгезию лейкоцитов к эндотелию, секрецию лизосомных ферментов нейтрофилами и их цитотоксичность, активирует синтез ДНК в лимфоцитах. Макрофаги вырабатывают факторы, активирующие выработку иммуноглобулинов B-лимфоцитами, дифференцировку T- и B-лимфоцитов; цитолитические противоопухолевые факторы, а также факторы роста, влияющие на размножение и дифференцировку клеток собственной популяции, стимулируют функцию фибробластов.

    Макрофаги образуются из стволовой клетки крови (СКК), а также от промоноцита и моноцита крови (т.е. имеют гематогенное происхождение). Полное обновление макрофагов в рыхлой волокнистой соединительной ткани осуществляется примерно в 10 раз быстрее, чем фибробластов.

    Одной из разновидностей макрофагов являются многоядерные гигантские клетки, которые раньше называли «гигантскими клетками инородных тел», так как они могут формироваться, в частности, в присутствии инородного тела. Многоядерные гигантские клетки представляют собой симпласты, содержащие 10—20 ядер и более, возникшие либо путем слияния одноядерных макрофагов, либо путем эндомитоза без цитотомии. По данным электронной микроскопии, в многоядерных гигантских клетках присутствуют развитый синтетический и секреторный аппарат и обилие лизосом. Цитолемма образует многочисленные складки.

    Понятие о макрофагической системе


    К этой системе относится совокупность всех клеток, обладающих способностью захватывать из тканевой жидкости организма инородные частицы, погибающие клетки, неклеточные структуры, бактерии и др. Фагоцитированный материал подвергается внутри клетки ферментативному расщеплению (т.н. «завершенный фагоцитоз»), благодаря чему ликвидируются вредные для организма агенты, возникающие местно или проникающие извне. К таким клеткам относятся:

    • макрофаги рыхлой волокнистой соединительной ткани,

    • звездчатые клетки синусоидных сосудов печени,

    • свободные и фиксированные макрофаги кроветворных органов (костного мозга, селезенки, лимфатических узлов),

    • макрофаги легкого – «пылевые клетки»,

    • перитонеальные макрофаги воспалительных экссудатов,

    • остеокласты костной ткани,

    • гигантские многоядерные клетки инородных тел,

    • глиальные макрофаги нервной ткани (микроглия).

    Все они способны к активному фагоцитозу, имеют на своей поверхности рецепторы к иммуноглобулинам и происходят из промоноцитов костного мозга и моноцитов крови.

    В отличие от таких «профессиональных» фагоцитов способность к факультативному поглощению может быть выражена независимо от указанных циторецепторов у других клеток (фибробластов, ретикулярных клеток, эндотелиоцитов, нейтрофильных лейкоцитов). Но эти клетки не входят в состав макрофагической системы.

    И.И. Мечников первым пришел к мысли о том, что фагоцитоз, возникающий в эволюции как форма внутриклеточного пищеварения и закрепившийся за многими клетками, одновременно является важным защитным механизмом. Он обосновал целесообразность объединения их в одну систему и предложил назвать ее макрофагической. Макрофагическая система представляет собой мощный защитный аппарат, принимающий участие как в общих, так и в местных защитных реакциях организма. В целостном организме макрофагическая система регулируется как местными механизмами, так нервной и эндокринной системами.

    Помимо рассмотренных выше клеток фибробластического ряда и макрофагов в состав клеток волокнистой соединительной ткани также входят

    Тучные клетки (или тканевые базофилы, или же лаброциты). В их цитоплазме находится специфическая зернистость, напоминающая гранулы базофильных лейкоцитов крови. Тучные клетки являются регуляторами местного гомеостаза соединительной ткани. Они принимают участие в понижении свертываемости крови, повышении проницаемости гематотканевого барьера, в процессах воспаления и иммуногенеза.

    У человека тучные клетки обнаруживаются всюду, где имеются прослойки рыхлой волокнистой соединительной ткани. Особенно много тканевых базофилов в стенке органов желудочно-кишечного тракта, матке, молочной железе, тимусе, миндалинах. Они часто располагаются группами по ходу кровеносных сосудов микроциркулярного русла — капилляров, артериол, венул и мелких лимфатических сосудов.

    Форма тучных клеток разнообразна. Клетки могут быть неправильной формы, овальными. Иногда эти клетки имеют короткие широкие отростки, что обусловлено способностью их к амебоидным движениям. У человека ширина таких клеток колеблется от 4 до 14 мкм, длина до 22 мкм. Ядра клеток сравнительно невелики, обычно округлой или овальной формы с плотно расположенным хроматином. В цитоплазме имеются многочисленные гранулы. Величина, состав и количество гранул варьируют. Их диаметр около 0,3—1 мкм. Меньшая часть гранул представляет собой ортохроматически окрашивающиеся азурофильные лизосомы.

    Большинство гранул тучных клеток отличается метахромазией, содержит гепарин, хондроитинсульфаты, гиалуроновую кислоту, гистамин.

    Органеллы тучных клеток (митохондрии, аппарат Гольджи, цитоплазматическая сеть) развиты слабо. В цитоплазме обнаружены различные ферменты: протеазы, липазы, кислая и щелочная фосфатазы, пероксидаза, цитохромоксидаза, АТФаза и др.

    Маркерным ферментом цитоплазмы тучных клеток следует считатьгистидиндекарбоксилазу, с помощью которой осуществляется синтез гистамина из гистидина.

    Тучные клетки способны к секреции и выбросу своих гранул. Дегрануляция тучных клеток может происходить в ответ на любое изменение физиологических условий и действие патогенов. Выброс гранул, содержащих биологически активные вещества, изменяет местный или общий гомеостаз. Но выход биогенных аминов из тучной клетки может происходить и путем секреции растворимых компонентов через поры клеточных мембран с запустеванием гранул (таким образом секретируется гистамин).

    Гистамин немедленно вызывает расширение кровеносных капилляров и повышает их проницаемость, что проявляется в локальных отеках. Он обладает также выраженным гипотензивным действием и является важным медиатором воспаления.

    Гепарин снижает проницаемость межклеточного вещества и свертываемость крови, оказывает противовоспалительное влияние. Гистамин же выступает как его антагонист.

    Количество тканевых базофилов изменяется в зависимости от физиологических состояний организма: возрастает в матке и молочных железах в период беременности, а в желудке, кишечнике, печени — в разгар пищеварения.

    Предшественники тканевых базофилов происходят из стволовых кроветворных клеток красного костного мозга. Процессы митотического деления тучных клеток наблюдаются крайне редко.


    Плазматические клетки (или плазмоциты). Эти клетки обеспечивают выработкуантител — гамма-глобулинов при появлении в организме антигена. Они образуются в лимфоидных органах из B-лимфоцитов, обычно встречаются в рыхлой волокнистой соединительной ткани собственного слоя слизистых оболочек полых органов, сальнике, интерстициальной соединительной ткани различных желез, лимфатических узлах, селезенке, костном мозге.

    Для плазмоцитов характерно выраженное развитие гранулярной эндо¬плазматической сети, что обусловливает резкую базофилию их цтоплазмы. Базофилия отсутствует только в небольшой светлой зоне цитоплазмы около ядра, образующей так называемую сферу или дворик. Здесь обнаруживаются центриоли и аппарат Гольджи.

    Величина плазмоцитов колеблется от 7 до 10 мкм. Форма клеток округлая или овальная. Ядра относительно небольшие, округлой или овальной формы, расположены эксцентрично. Цитоплазма резко базофильна, содержит хорошо развитую концентрически расположенную гранулярную эндоплазматическую сеть, в которой синтезируются белки (антитела).

    Для плазматических клеток характерна высокая скорость синтеза и секреции антител, что отличает их от своих предшественников – B-лимфоцитов. Хорошо развитый секреторный аппарат позволяет синтезировать и секретировать несколько тысяч молекул иммуноглобулинов в секунду. Количество плазмоцитов увеличивается при различных инфекционно-аллергических и воспалительных заболеваниях.

    Плазматические клетки имеют многоэтапный путь развития, характерной чертой которого является то, что их предшественники могут выступать в роли самостоятельных иммунокомпетентных клеток.


    Адипоциты (или жировые клетки). Так называют клетки, которые обладают способностью накапливать в больших количествах резервный жир, принимающий участие в трофике, энергообразовании и метаболизме воды. Адипоциты располагаются группами, реже поодиночке и, как правило, около кровеносных сосудов. Накапливаясь в больших количествах, эти клетки образуют жировую ткань – разновидность соединительной ткани со специальными войствами.

    Форма одиночно расположенных жировых клеток - шаровидная. Зрелая жировая клетка обычно содержит одну большую каплю нейтрального жира, занимающую всю центральную часть клетки и окруженную тонким цитоплазматическим ободком, в утолщенной части которого лежит ядро. Кроме того, в цитоплазме адипоцитов имеется небольшое количество других липидов: холестерина, фосфолипидов, свободных жирных кислот. На гистологических препаратах липиды хорошо окрашиваются Суданом-III в оранжевый цвет или осмиевой кислотой в черный цвет. В прилежащей к ядру цитоплазме, а иногда и в более тонкой противоположной ее части выявляются палочковидные и нитевидные митохондрии с плотно упакованными кристами.

    Адипоциты обладают большой способностью к метаболизму. На периферии клетки встречаются многочисленные пиноцитозные пузырьки. Подвержено значительным колебаниям как количество жировых включений в адипоцитах, так и число самих жировых клеток в рыхлой волокнистой соединительной ткани.
      Расходование жира, депонированного в адипоцитах, регулируется гормонами (т.к. адреналин, инсулин) и происходит под действием тканевого липолитического фермента (липазы), расщепляющего триглицериды до глицерина и жирных кислот, которые в крови связываются с альбумином и переносятся в другие ткани, нуждающиеся в питательных веществах.
      Новые жировые клетки в соединительной ткани взрослого организма могут развиваться при усиленном питании из адвентициальных клеток, прилегающих к кровеносным капиллярам. При этом в цитоплазме клеток появляются сначала мелкие капельки жира, которые, увеличиваясь в размере, постепенно сливаются в более крупные капли. По мере увеличения жировой капли эндоплазматическая сеть и аппарат Гольджи редуцируются, а ядро сдавливается и уплощается.


    Среди клеток собственно соединительной ткани следует назвать также адвентициальные клетки сосудов, перициты капилляров, а также пигментные клетки.

    Адвентициальные клетки. Это малоспециализированные клетки, сопровождающие кровеносные сосуды. Они имеют уплощенную или веретенообразную форму со слабобазофильной цитоплазмой, овальным ядром и небольшим числом органелл. В процессе дифференцировки эти клетки могут, по-видимому, превращаться, в фибробласты, миофибробласты и адипоциты.

    Перициты — (или клетки Руже) клетки, окружающие кровеносные капилляры и входящие в состав их стенки.

    Пигментные клетки (пигментоциты, меланоциты). Эти клетки содержат в своей цитоплазме пигмент меланин. Их много в родимых пятнах, а также в соединительной ткани людей черной и желтой рас. Пигментоциты имеют короткие, непостоянной формы отростки, большое количество меланосом (содержащих гранулы меланина) и рибосом.

    В цитоплазме меланоцитов содержатся также биологически активные амины, которые могут принимать участие вместе с тучными клетками в регуляции тонуса стенок сосудов.

    Меланоциты только формально относятся к соединительной ткани, так как располагаются в ней. Что касается их происхождения, то доказано образование этих клеток из ганглиозной пластинки (нервных гребешков) нейроэктодермы, а не из мезенхимы.

    29. ХРЯЩЕВЫЕ ТКАНИ

    Общая характеристика: относительно низкий уровень метаболизма, отсутствие сосудов, гидрофильность, прочность и эластичность.

    Строение: клетки хондроциты и межклеточное вещество (волокна, аморфное вещество, интерстициальная вода).

    ХРЯЩЕВЫЕ ТКАНИ


    Клетки (хондроциты) составляют не более 10% массы хряща. Основной объем в хрящевой ткани приходится на межклеточное вещество. Аморфное вещество достаточно гидрофильно, что позволяет доставлять клеткам питательные вещества путем диффузии из капилляров надхрящницы.

    Дифферон хондроцитов: стволовые, полустволовые клетки, хондробласты, молодые хондроциты, зрелые хондроциты.

    Хондроциты являются производными хондробластов и единственной популяцией клеток в хрящевой ткани, расположены в лакунах. Хондроциты можно подразделить по степени зрелости на молодые и зрелые. Молодые сохраняют черты строения хондробластов. Они имеют продолговатую форму, развитую грЭПС, крупный аппарат Гольджи, способны образовывать белки для коллагеновых и эластических волокон и сульфатированные гликозаминогликаны, гликопротеины. Зрелые хондроциты имеют овальную или округлую форму. Синтетический аппарат развит в меньшей степени при сравнении с молодыми хондроцитами. В цитоплазме происходит накопление гликогена и липидов.

    Хондроциты способны к делению и образуют изогенные группы клеток, окруженные одной капсулой. В гиалиновом хряще изогенные группы могут содержать до 12 клеток, в эластическом и волокнистом хрящах – меньшее число клеток.

    Функции хрящевых тканей: опорная, формирование и функционирование сочленений.

    Классификация хрящевых тканей

    Различают: 1) гиалиновую, 2) эластическую и 3) волокнистую хрящевую ткань.

    Гистогенез. В эмбриогенезе хрящи образуются из мезенхимы.

    1-я стадия. Образование хондрогенного островка.

    2-я стадия. Дифференциация хондрробластов и начало образования волокон и хрящевого матрикса.

    3-я стадия. Рост хрящевой закладки двумя путями:

    1)      Интерстициальный рост – обусловлен увеличением ткани изнутри (образование изогенных групп, накопление межклеточного матрикса), происходит при регенерации и в эмбриональном периоде.

    2)      Аппозиционный рост – обусловлен наслоением ткани за счёт деятельности хондробластов в надхрящнице.

             Регенерация хряща. При повреждении хряща регенерация происходит из камбиальных клеток в надхрящнице, при этом образуются новые слои хряща. Полноценная регенерация происходит только в детском возрасте. Для взрослых характерна неполная регенерация: на месте хряща образуется ПВНСТ.

            Возрастные изменения. Эластический и волокнистый хрящи устойчивы к повреждениям и мало меняются с возрастом. Гиалиновая хрящевая ткань может подвергаться обызвествлению, трансформируясь иногда в костную ткань.

    Хрящ как орган состоит из нескольких тканей: 1) хрящевая ткань, 2) надхрящница: 2а) наружный слой – ПВНСТ, 2б) внутренний слой – РВСТ, с кровеносными сосудами и нервами, а также содержит стволовые, полустволовые клетки и хондробласты.

    1. ГИАЛИНОВАЯ ХРЯЩЕВАЯ ТКАНЬ

    Локализация: хрящи носа, гортани (щитовидный хрящ, перстневидный хрящ, черпаловидный, кроме голосовых отростков), трахеи и бронхов; суставные и рёберные хрящи, хрящевые пластинки роста в трубчатых костях.

    Строение: клетки хряща хондроциты (описаны выше) и межклеточное вещество, состоящее из коллагеновых волокон, протеогликанов и интерстициальной воды. Коллагеновые волокна(20-25%) состоят из коллагена II типа, расположены неупорядоченно. Протеогликаны,составляющие 5-10% от массы хряща, представлены сульфатированными гликозоаминогликанами, гликопротеинами, которые связывают воду и волокна. Протеогликаны гиалинового хряща препятствуют его минерализации. Интерстициальная вода (65-85%) обеспечивает несжимаемость хряща, является амортизатором. Вода способствует эффективному обмену веществ в хряще, переносит соли, питательные вещества, метаболиты.

    Суставной хрящявляется разновидностью гиалинового хряща, не имеет надхрящницы, питание получает из синовиальной жидкости. В суставном хряще выделяют: 1) поверхностную зону, которую можно назвать бесклеточной, 2) среднюю (промежуточную) – содержащую колонки хрящевых клеток и 3) глубокую зону, в которой хрящ взаимодействует с костью.

     2. ЭЛАСТИЧЕСКАЯ ХРЯЩЕВАЯ ТКАНЬ

    Локализация: ушная раковина, хрящи гортани (надгортанный, рожковидные, клиновидные, а также голосовой отросток у каждого черпаловидного хряща), евстахиевой трубы. Этот вид ткани необходим для тех участков органов, которые способны менять свой объем, форму и обладают обратимой деформацией.

    Строение: клетки хряща хондроциты (описаны выше) и межклеточное вещество, состоящее из эластических волокон (до 95%) волокон и аморфного вещества. Для визуализации используются красители, выявляющие эластические волокна, например, орсеин.

    3. ВОЛОКНИСТАЯ ХРЯЩЕВАЯ ТКАНЬ

    Локализация: фиброзные кольца межпозвоночных дисков, суставные диски и мениски, в симфизе (лонное сочленение), суставные поверхности в височно-нижнечелюстном и грудинно-ключичном суставах, в местах прикрепления сухожилий к костям или гиалиновому хрящу.

    Строение: хондроциты (чаще поодиночке) удлинённой формы и межклеточное вещество, состоящее из небольшого количества аморфного вещества и большого количества коллагеновых волокон. Волокна располагаются упорядоченно параллельными пучками

    30. КОСТНЫЕ ТКАНИ

    Строение: клетки и межклеточное вещество.

    Виды костной ткани: 1) ретикулофиброзная, 2) пластинчатая.

    Также к костным тканям относятся специфические для зубов ткани: дентин, цемент.

     В костной ткани 2 дифферона клеток: 1) остеоцит и его предшественники, 2) остеокласт.

    Дифферон остеоцита: стволовые и полустволовые клетки, остеогенные клетки, остеобласты, остеоциты.

    Клетки образуются из малодифференцированных клеток мезенхимы; у взрослых стволовые и полустволовые клетки имеются во внутреннем слое надкостницы, во время образования кости находятся на ее поверхности и вокруг внутрикостных сосудов.

    Остеобласты способны к делению, располагаются группами, имеют неровную поверхность и короткие отростки, связывающие их с соседними клетками. В клетках хорошо развит синтетический аппарат, т.к. остеобласты участвуют в образовании межклеточного вещества: синтезируют белки матрикса (остеонектин, сиалопротеин, остеокальцин), коллагеновые волокна, ферменты (щелочная фосфатаза и др.).

    Функция остеобластов: синтез межклеточного вещества, обеспечение минерализации.

    Основные факторы, активирующие остеобласты: кальцитонин, тироксин (гормоны щитовидной железы); эстрогены (гормоны яичников); витамины С, Д; пьезо-эффекты, возникающие в кости при сжимании.

    Остеоциты – замурованные в минерализованное межклеточное вещество остеобласты. Клетки находятся в лакунах – полостях межклеточного вещества. Своими отростками остеоциты контактируют друг с другом, вокруг клеток в лакунах находится межклеточная жидкость. Синтетический аппарат развит слабее, чем в остеобластах.

    Функция остеоцитов: поддержание гомеостаза в костной ткани.

    Остеокласт.Дифферон остеокласта включает дифферон моноцита (развивается в красном костном мозге),  затем моноцит выходит из кровеносного русла и трансформируется в макрофаг. Несколько макрофагов сливаются, и образуется многоядерный симпласт –остеокласт. В остеокласте много ядер, большой объём цитоплазмы. Характерна полярность (наличие функционально неравнозначных поверхностей): зона цитоплазмы, прилегающая к костной поверхности, называется гофрированной каёмкой, здесь много цитоплазматических выростов и лизосом.

    Функции остеокластов: разрушение волокон и аморфного вещества кости.

    Резорбция кости остеокластом: первый этап – прикрепление к кости с помощью белков (интегрины, витронектины и др.) для обеспечения герметизации; второй этап – закисление и растворение минералов в участке разрушения путем накачивания ионов водорода с участием АТФаз мембран гофрированного края; третий этап – растворение органического субстрата кости с помощью ферментов лизосом (гидролазы, коллагеназы и др.), которые остеокласт выводит экзоцитозом в зону разрушения.

    Факторы, активирующие остеокласты: гормон паращитовидной железы паратирин; пьезо-эффекты, возникающие в кости при ее растяжении; невесомость; отсутствие физической нагрузки (иммобилизация) и др.

    Факторы, угнетающие остеокласты: гормон щитовидной железы кальциотонин, гормоны яичников эстрогены.

    Межклеточное вещество кости состоит из коллагеновых волокон (коллаген I, V типов) и основного (аморфного) вещества, состоящего из 30% органических и 70% неорганических веществ. Органические вещества кости: гликозаминогликаны, протеогликаны; неорганические вещества: фосфат кальция, в основном в виде кристаллов гидроксиапатита.

    Наибольший объем у взрослого человека составляет пластинчатая костная ткань, которая бывает компактная  и губчатая. На поверхности пластинчатых костей в зоне прикрепления сухожилий, а также в швах черепа находится ретикулофиброзная костная ткань.

    Кость как орган состоит из нескольких тканей: 1) костная ткань, 2) надкостница: 2а) наружный слой – ПВНСТ, 2б) внутренний слой – РВСТ, с кровеносными сосудами и нервами, а также стволовыми и полустволовыми клетками.

    1. РЕТИКУЛОФИБРОЗНАЯ (ГРУБОВОЛОКНИСТАЯ) КОСТНАЯ ТКАНЬ

    Эта ткань формируется у плодов человека как основа костей. У взрослых она представлена незначительно и находится в швах черепа в местах прикрепления сухожилий к костям.

    Строение: остеоциты и межклеточное вещество, в котором пучки коллагеновых минерализованных волокон расположены хаотично. Остеоциты находятся в костных полостях. С поверхности участки кости покрыты надкостницей, из которой ретикулофиброзная костная ткань получает питательные вещества путем диффузии.

    ПЛАСТИНЧАТАЯ (ТОНКОВОЛОКНИСТАЯ) КОСТНАЯ ТКАНЬ–основной вид костной ткани во взрослом организме. Строение: остеоциты и межклеточное вещество, состоящее из волокон (коллагеновые или оссеиновые) и аморфного вещества. Межклеточное вещество представлено пластинками толщиной 3-10 мкм. В пластинке волокна располагаются параллельно друг другу, волокна соседних пластинок лежат под углом друг к другу. Между пластинками находятся тела остеоцитов в лакунах, а костные канальцы с отростками остеоцитов пронизывают пластинки под прямым углом.

    Виды пластинчатой костной ткани. Из пластинчатой костной ткани построены компактноеи губчатое вещество большинства плоских и трубчатых костей.

    В губчатом веществе костные пластинки прямые, входят в состав трабекул – комплекс 2-3 параллельно расположенных пластинок. Трабекулы отграничивают полости заполненные красным костным мозгом.

    В компактной кости наряду с прямыми пластинками находятся концентрические пластинки, образующие остеоны.
    1   ...   6   7   8   9   10   11   12   13   ...   31


    написать администратору сайта