Болонская система1.Новая версия. Методическая разработка практического занятия 1 (для преподавателей) модуля 1 пропедевтика ортопедической стоматологии
Скачать 4.91 Mb.
|
Термопластичные (обратимые) высокомолекулярные соединения при нагревании постепенно приобретают возрастающую с повышением температуры пластичность, часто переходящую в вязкотекучее состояние, а при охлаждении вновь возвращаются в твердое упругое состояние. Это свойство не утрачивается и при многократном повторении процессов нагревания и охлаждения. К ним относятся полиметилметакрилат, полистирол, капрон, поливинилхлорид, полиэтилен, полипропилен, фторопласт, поликарбонат и др. Термореактивные (необратимые) полимеры имеют сравнительно невысокую относительную молекулярную массу и при нагревании до критической температуры (150–170°С), а в некоторых случаях и без нагрева они теряют способность вторично размягчаться, при этом некоторые компоненты претерпевают химическое изменение или разрушаются. К этому виду пластмасс относятся бакелит, аминопласты, фенопласты и др. Термостабильные высокомолекулярные соединения при нагревании не переходят в пластичное состояние и сравнительно мало изменяются по физическим свойствам вплоть до температуры их термического разрушения. По характеру деформаций, возникающих при механическом воздействии на высокомолекулярные соединения, последние можно разделить на твердые и пластичные. Построение макромолекул возможно двумя путями: полимеризацией и поликонденсацией. Полимеризация – реакция взаимного соединения мономерных соединений. В процессе полимеризации путем последовательного присоединения многих молекул мономера происходит образование полимера, но при этом не происходит отщепления или выделения каких–либо атомов или молекул. В результате реакции образуется высокомолекулярное соединение, отличающееся от исходного лишь величиной молекулы. Механизм реакции полимеризации заключается в активации некоторых молекул мономера под действием света или катализатора и в последующем присоединении к уже активизированным молекулам других молекул с образованием длинных цепей. Присоединение продолжается до тех пор, пока энергия первоначально активизированной молекулы не рассеется. Реакция полимеризации имеет цепной характер и складывается из трех основных стадий. 1. Активация молекул мономера – индукционный период, когда происходит разрыв двойных связей, предшествующий соединению молекул мономера. Образование полимера крайне незначительно. Продолжительность индукционного периода зависит от химической природы мономера, количества катализатора и температуры. 2. Рост цепи – главная фаза реакции, во время которой происходит образование основного количества полимера. После того как в реакционной массе возникли активные центры, обладающие высокой реакционной способностью, зависящей от внутримолекулярных колебаний или наличия свободных химических валентностей, начинается процесс роста цепи. Каждый активный центр обладает способностью очень быстро присоединять другие молекулы. Весь процесс протекает при помощи свободных радикалов, возникающих на концах растущей цепи полимера. При этом акт присоединения имеет место при каждом столкновении, а это сопровождается освобождением большого количества энергии, каждый раз регенерирующей свободные валентности. Этот период протекает по типу экзотермической реакции, то есть с выделением значительного количества тепла. 3. Обрыв цепи: образование макромолекулы завершается моментом прекращения ее роста, что происходит по разным причинам. Поэтому в соответствии с воздействием отдельных факторов полимеризация заканчивается образованием полимеров одинакового строения, но с различной длины молекулярной цепью или, как принято говорить, полимер представляет собой смесь полимергомологов. Если в начале реакции имелось много активных центров (много тепла, большое количество катализатора), то возникают более короткие цепи, и образуется низкомолекулярный полимер. Небольшое количество первоначальной энергии ведет к образованию небольшого количества активных центров и соответственно, к образованию высокомолекулярного полимера. Чем большую степень полимеризации удалось получить (т.е., чем длиннее макромолекула), тем более высокими свойствами будет обладать полимер. К полимеризации склонны различные эфиры акриловой и метакриловой кислот. Совместно могут полимеризоваться молекулы двух или нескольких разных мономеров. Это важное свойство мономерных соединений, называемое реакцией сополимеризации, позволяет синтезировать полимеры (сополимеры) с различными, заранее заданными свойствами. Меняя состав и соотношение мономеров, можно получать сополимеры, повышенной прочности (например, этакрил), изменять их эластичность, твердость и т.д. Кроме того, между линейно расположенными макромолекулами в процессе полимеризации могут образовываться поперечные связи, то есть образуется так называемый сшитый полимер. «Сшивка» макромолекул может происходить и благодаря введению специальных веществ – «сшивагентов». «Сшитые» полимеры обладают рядом повышенных свойств (твердость, теплостойкость). Поликонденсация – процесс получения полимеров в результате соединения мономеров с образованием, наряду с высокомолекулярными, низкомолекулярных веществ (вода, кислоты, аммиак и т. д.). Благодаря сочетанию таких свойств, как низкая относительная плотность, значительная механическая прочность, стойкость к щелочам и кислотам, малая влагопоглощаемость, простота переработки в изделия, пластмассы нашли широкое применение и в ортопедической стоматологии. В настоящее время пластмассы акриловой группы являются основными материалами из которых изготавливают различные виды зубных протезов. На основе пластмасс созданы слепочные материалы: эпоксидные смолы, кремний, органические смолы, синтетические каучуки. Большинство пластмасс представляет собой многокомпонентные системы. Подбирая отдельные компоненты и их соотношения, получают материалы с совокупностью желаемых свойств. Помимо основного вещества, называемого связующим, большинство пластмасс содержит наполнитель (замутнитель), пластификатор, краситель, катализатор, ингибитор и другие добавки. Возможность формования изделий (протезов, слепков и т.п.) из пластмасс определяется тем, что эти материалы обладают пластичностью. Пластмассы могут полимеризоваться под внешним тепловым воздействием – пластмассы горячего отвердения и без него – пластмассы холодного отвердения (самотвердеющие) или в более старых учебниках их еще называют быстротвердеющими. Процесс полимеризации пластмассы горячего отвердения с определенной степенью условности можно представить в виде следующей схемы: То есть, другими словами, в пластмассах горячего отвердения внешнее тепло является инициатором, действующим на катализатор. Технология применения акриловых пластмасс, возможные изменения их свойств. Одним из способов получения изделий из пластмассы является прессование под давлением тестообразной массы полимер + мономер в заранее приготовленную форму. Заполнение формы массой может происходить при небольшом давлении (50–80 кгс/мм2), что допускает использование гипсовых форм. Этот способ является основным при формировании зуботехнических изделий (базиса зубных протезов, искусственные зубы, каппы и т.д.). Изделия из пластмассы могут быть получены и методом литья под давлением, а иногда и свободной формовкой (получение слепков). Весь процесс слагается из приготовления пластмассового теста, формовки и полимеризации. Приготовление пластмассового теста. Для получения изделия с достаточно высокими прочностными свойствами необходимо, чтобы полимеризация смеси полимер + мономер проходила в условиях, при которых достигается наибольшая плотность полимера. К таким условиям относятся: 1) оптимальное соотношение компонентов смеси; 2) полное созревание пластмассового теста перед формовкой; 3) создание и строгое выдерживание температурного режима полимеризации; 4) поддержание необходимого давления внутри формы. Большое значение при составлении смеси имеет соотношение мономера и полимера. Плотность полимера будет наибольшей, если количество мономера взято без избытка, но достаточно для набухания гранул порошка и их склеивания. Оптимальным является объёмное соотношение мономера к полимеру 1:3. При таком количестве мономера шарики полимера находятся в плотном касании, а мономер заполняет пространство между гранулами. В этих условиях усадка мономера при полимеризации уменьшается с 20%, наблюдаемой при свободной полимеризации, до 6–7%. Пластмассовое тесто приготавливают в стеклянной или фарфоровой посуде. Вначале наливают мономер, а затем насыпают порошок, используя для этого мерники. Смесь тщательно размешивают и сосуд плотно закрывают. Абсолютно точное соотношение мономера и полимера при получении теста определить невозможно из–за неоднородности размеров гранул порошка, трудности определения степени улетучивания мономера при созревании массы. Оптимальное количество порошка и жидкости указывается на каждой фабричной серии. Обычно мономер берут с некоторым избытком, однако после полного насыщения полимера избыток его с поверхности масс следует удалить. В таком состоянии пластмассовое тесто должно быть выдержано 30–40 мин. В зависимости от температуры окружающей среды время выдержки массы может меняться. Созревание массы идет быстрее в тепле, на холоде оно замедляется. Для замедления процесса созревания массу можно поместить в холодильник. В течение этого периода происходит набухание, разрыхление и частичное растворение гранул полимера, а молекулы мономера под действием катализатора–перекиси бензоила начинают частично полимеризоваться. Это приводит к некоторому уплотнению смеси, показателем чего является изменение его вязкости. У созревающей незатвердевшей массы по ее физическому состоянию различают четыре стадии: 1) песочную, характеризующуюся свободным, не связанным положением гранул в смеси. Масса напоминает смоченный водой песок; 2) тянущихся нитей, когда масса становится более вязкой, а при ее растягивании появляются тонкие нити; 3) тестообразную, отличающуюся еще большей плотностью и исчезновением тянущихся нитей при разрыве; 4) резиноподобную с выраженными упругими свойствами. Пластмассовое тесто считается созревшим, когда наступает третья стадия его созревания и при растягивании массы прекращается образование нитей. В таком состоянии масса пластична и легко формуется. Дальнейшее выдерживание массы нецелесообразно: она приобретает резиноподобную консистенцию, а в последующем затвердевает. Чтобы удлинить время нахождения массы в пластичном состоянии, используют полимерные порошки разной степени дисперсности и с разной относительной молекулярной плотностью. При контакте с мономером первыми размягчаются полимеры мелкодисперсные и с более низкой относительной молекулярной плотностью. Набухание полимеров с высокой относительной молекулярной плотностью происходит позже, в результате чего общее время пластического состояния массы, удлиняется. На процесс созревания пластмассового теста оказывают действие ингибитор и пластификатор. С увеличением количества ингибитора (гидрохинона), созревание массы замедляется. Добавка пластификатора (дибутилфталата) в созревающую массу замедляет процесс набухания полимера вследствие того, что зерна полимера оказываются окруженными пластификатором и путь молекулам мономера к ним становится более трудным. Если полимер был пластифицирован при заводском получении, то он имеет разрыхленные полимерные цепи. Это делает их более доступными к действию молекул мономера, в которых они легко растворяются. Формовка (прессование и литье). Приготовленное пластмассовое тесто используют для формовки–заполнения заранее заготовленных форм. В зуботехнической практике формы делают из гипса в разъемных металлических кюветах. Гипсовая форма является точной копией восковой репродукции зубного, протеза. Формовочная масса помещается в форму, разъемные части кюветы соединяют и помещают под пресс. Прессование проводится с целью полного заполнения формы и уплотнения массы. Находящаяся в кювете масса должна постоянно находиться под давлением, что способствует формированию более плотной структуры, пластмассы и уменьшает усадку. Получить изделие из пластмассы можно также методом литья под давлением инжекционной формовкой. Литье под давлением проводят в специальных аппаратах, состоящих из шприц–пресса и специальной кюветы, куда пластмассовое тесто вдавливается через литниковые каналы. Одним из преимуществ этого метода является то, что формовочная масса в ходе всего процесса полимеризации находится под давлением. При этом через литники в форму может поступать определенное количество массы, что может значительно компенсировать усадку. Для формовки зубных протезов методом литья под давлением могут быть использованы акриловые пластмассы, поликарбонаты, винилакрилаты и др. Полимеризация пластмасс, проводимая в системе литьевого прессования, обеспечивает высокую точность и уменьшение количества свободного мономера. В последние годы появилась возможность создания рентгеноконтрастных стоматологических материалов для облегчения поиска протезов или их отломков, попавших в дыхательные пути или пищевод. Предложены рентгеноконтрастные добавки (сульфат бария, фторид бария, бариевые и висмутовые, стекла и др.) но их требуется вводить в таких количествах, которые существенно не ухудшают физико–механические свойства базисов и зубов. Важнейшей характеристикой базисного материала являются его пластичность и ударопрочность. В основном, эти свойства определяют функциональные качества и долговечность протеза. В стоматологии несколько десятилетий удерживают первенство базисные материалы на основе различных производных акриловой и метакриловой кислот. Ведущую роль акриловые материалы заслужили своими главными свойствами: относительно низкой токсичностью и удобством переработки. Наиболее результативным для улучшения физико–механических свойств базисных материалов оказался метод сополимеризации, в особенности привитой сополимеризации. Использование этого метода позволило получить лучшие базисные материалы. Так, фторкаучук, как полимер для прививки в базисных композициях, позволил разработать в 1972 г. материал «Фторакс», а исследования полиацеталей, в составе базисных материалов, привело к разработке в 1979 г. принципиально нового материала – «Акронила». Температурный режим полимеризации смеси мономер–полимер. Весь технологический цикл полимеризации пластмассы преследует основную цель – получить ее с наиболее высокими физикомеханическими свойствами. В современной технологии получения зубных протезов из акрилатов мономер используют в минимальном количестве лишь для связи полимерных гранул в формовочной массе. Усадку при этом удалось уменьшить до 7%. Однако и такой процент ее довольно велик. Зубные протезы и другие конструкции должны отличаться высокой точностью, т.е. соответствовать размерами форме соответствующих участков зубных рядов и челюстей. ' При соблюдении технологии изготовления зубных протезов из пластмассы ее суммарную усадку удается уменьшить до небольших величин (0,3–0,5%). Полимеризационная усадка пластмассового теста компенсируется заметным расширением ее вследствие высокого коэффициента термического расширения. Компенсация усадки частично происходит при пользовании зубными протезами в связи с водопоглощением пластмассы и связанным с ним увеличением, объёма до 0,5%. В результате нарушений режима полимеризации в структуре пластмасс могут образоваться дефекты: пористость (газовая, от отсутствия сжатия, гранулярная), внутренние напряжения, трещины. О причинах, вызывающих газовую пористость, мы уже говорили выше. Напомним лишь, что она возникает в толще массы и обусловлена испарением мономера внутри полимеризующейся формовочной .массы. Это бывает при нарушениях режима полимеризации, например, при опускании кюветы с пластмассовым тестом в гипсовой форме в кипящую воду. Данный вид пористости может также возникать при нагревании формы с большим количеством массы вследствие сложности отвода из неё излишка тепла, развивающегося в результате экзотермичности процесса полимеризации. Пористость сжатия возникает при недостаточном давлении при формовке масс, вследствие чего отдельные части формы не заполняются формовочной массой и образуются пустоты. Обычно этот вид пористости наблюдается в концевых, истонченных частях конструкции. Гранулярная пористость выглядит в виде меловых полос или пятен. Она возникает как результат недостатка мономера. Наиболее часто мономер улетучивается из открытого сосуда, где созревает пластмассовое тесто или при контрольном раскрытий кюветы и длительном нахождении ее в таком состоянии. Обладая большой испаряемостью, мономер легко улетучивается с поверхности, вследствие чего гранулы полимера оказываются недостаточно связанными, рыхлыми. Поверхность открытой массы высыхает, приобретает матовый оттенок. Формовка такой массой приводит к появлению меловых полос или пятен, а гранулярная пористость резко ухудшает физико–химические свойства пластмассы. Внутренние напряжения в пластмассе при полимеризации возникают в тех случаях, когда охлаждение и отвердение ее происходит неравномерно в разных частях. В пластмассовых изделиях всегда имеются значительные внутренние остаточные напряжения, что приводит к растрескиванию и короблению. Они появляются в местах соприкосновения пластмассы с инородными материалами (фарфоровыми зубами, крампонами, металлическим каркасом, отростками кламмеров). В данном случае эти явления есть результат различных коэффициентов линейного и объемного расширения пластмасс, фарфора, сплавов металлов. В местах перехода массивных участков пластмассового изделия в тонкие также возникают остаточные напряжения. Дело в том, что в толстых участках усадка пластмассы имеет большую величину, чем в тонких. Кроме того, резкие перепады температуры при полимеризации вызывают или усиливают упругие деформаций. Это, в частности, вызвано опережением затвердевания наружного слоя изделия. Затем отвердение внутренних слоев вызывает уменьшение их объема и они оказываются под воздействием растягивающих напряжений, поскольку наружные слои при этом уже приобрели жесткость. Нарушение процессов полимеризации приводит также к тому, что мономер полностью не вступает в реакцию и часть его остается в свободном (остаточном) состоянии. Полимеризат всегда содержит остаточный мономер. Часть оставшегося в пластмассе мономера связана силами Ван–дер–Ваальса с макромолекулами (связанный мономер), а другая часть находится в свободном состоянии (свободный мономер). Последний, перемещаясь к поверхности протеза (аппарата) выходит в ротовую жидкость и растворяется в ней. Он вызывает воспаление слизистой оболочки полости рта, различные аллергические реакции организма. Базисные пластмассы при правильном режиме полимеризаций содержат 0,5%; быстротвердеющие – 3.5% остаточного мономера. Базисные материалы. Этакрил. Пластмасса представляет собой синтетический материал на основе акрилового сополимера, окрашенного в цвета, близкие к цвету слизистой оболочки полости рта. Обладает повышенной пластичностью в момент формования и повышенной эластичностью после полимеризации. Фторакс. Представляет собой пластмассу горячего отверждения типа порошок–жидкость на основе фторсодержащих акриловых сополимеров. Порошок – мелкодисперсный, окрашенный в розовый цвет, суспензионный и привитой сополимер метилового эфира метакриловой кислоты и фторкаучука. Жидкость – метиловый эфир метакриловой кислоты, стабилизированный и содержащий сшивагент – диметакриловый эфир дефенилолпропана. Протез из «Фторакса» обладает повышенной прочностью и эластичностью. Своим цветом и полупрозрачностью он хорошо гармонирует с мягкими тканями полости рта. Гипсование производится по общепринятой методике, но в качестве разделительного слоя рекомендуется применять растительное масло (подсолнечное и др.). Для этого после выплавления воска кювету погружает в сосуд с маслом на 1,5–2 часа. Затем кювету извлекают и дают маслу стечь; избыток масла удаляют ватным тампоном. Акронил – сшитая и привитая пластмасса, которая предназначена для изготовления базисов съемных протезов, челюстно–лицевых. и ортодонтических аппаратов, съемных шин при заболеваниях пародонта, исправлениях съемных зубных протезов и других целей. Материал не обладает общетоксическими, раздражающими и аллергенными свойствами. Цвет протезов из «Акронила» соответствует цвету тканей полости рта. Технология изготовления протезов из «Акронила» не отличается, в основном, от общепринятой с тем лишь исключением, что выдерживать температуру кипения воды следует не более 30 минут, и если обработка протеза производится спустя некоторое время после извлечения из кюветы, то его необходимо хранить в сосуде с водой комнатной температуры. Пластмасса бесцветная. Пластмасса на основе очищенного от стабилизатора полиметилметакрилата, содержащего антистаритель. Состоит из порошка и жидкости. Порошок содержит антистаритель – тинувин, который предохраняет пластмассу от старения и разрушения под действием агрессивной среды. Тинувин способствует также повышению прочности пластмассы. Применяется для изготовления базисов протезов в тех случаях, когда противопоказан окрашенный базис, а также для других целей ортопедической стоматологии, когда необходим прозрачный базисный материал. В отличие от ранее выпускаемых подобных материалов, обладает повышенной прочностью и прозрачностью. При приготовлении теста порошок и жидкость тщательно смешивают в соотношении: 2 части порошка и 1 или 0,9 части жидкости по массе. Время «созревания» массы зависит от температуры окружающей среды. Массу считают готовой, когда она теряет липкость. Эластичные базисные материалы находят все более широкий спрос при изготовлении лицевых и челюстных протезов, пластиночных зубных протезов с двойным базисом, для исправления аномалий зубочелюстной системы, а также при устранении врожденных дефектов (в обтураторах). Наличие мягкого слоя исключает появление боли при наложении пластиночного протеза на острые костные выступы протезного ложа. Известно, что базис протеза нередко балансирует на челюсти, если лежащие под ним ткани имеют различную степень податливости. Этого можно избежать, если базис будет дифференцированным, то есть состоять из твердых и мягких материалов. Твердая поверхность базиса контактирует с малоподатливыми (неподвижными) тканями альвеолярного гребня, мягкая – с подвижными или податливыми. Этим обеспечивается равномерное прилегание пластиночного протеза. Промышленностью освоены эластичные базисные материалы: «Эладент», «Ортосил», «Боксил», «ПМ–1». «Эладент» применяют для изготовления двухслойных съемных протезов при необходимости создания мягкой прослойки, снижающей давление на подлежащие опорные ткани. Этот материал представляет собой эластичную пластмассу на основе винакриловых сополимеров. Применяется также при наличии костных выступов и острого альвеолярного гребня при протезировании беззубых челюстей. Изготовление мягкой подкладки из «Эладента–100» возможно двумя способами: 1) изготовление двухслойного протеза с одновременной паковкой из «Эладента–100» и базисной пластмассы в тестообразном состоянии; 2) изготовление двухслойного базиса протеза с нанесением мягкой подкладки на готовый протез. Первый способ предусматривает изготовление двухслойного протеза с одновременной паковкой из «Эладента–100» и базисной пластмассы «Этакрил», «Акрел». После выплавления воска, в кювете на гипсовую модель укладывают восковую подкладку нужной толщины и накрывают ее влажным целлофаном. После этого пакуют в форму, предварительно покрытую лаком «Изокол», пластмассовое тесто избранного базисного материала «Этакрил», «Акрел». Затем открывают форму, удаляют влажный целлофан, излишки пластмассы и восковую подкладку. Вместо последней наносят приготовленную массу «Эладент–100» и проводят полимеризацию. Обработку готовых двухслойных протезов производят обычным методом. Второй способ (модифицированный) предусматривает изготовление двухслойного базиса протеза с нанесением мягкой прокладки на готовый протез. Для этого уточняют границы протеза путем коррекции. Следует учесть, что прочная связь базисной пластмассы с мягкой подкладкой из «Эладента» получается только при контакте материалов в тестообразном состоянии (тесто к тесту). Для этого в приготовленной кювете на контрштамп укладывают восковую прокладку нужной толщины (для образования пространства), накрывают влажным целлофаном и прессуют. Замешивают базисную пластмассу и небольшим слоем теста покрывают подготовленный протез. Далее заметают восковую прокладку эластичной пластмассой. Таким образом, слой пластмассового теста обеспечивает прочную связь базисной пластмассы с мягкой подкладкой из «Эладента–100». «Эладент–100» хранят в плотно закрытой таре в сухих, закрытых помещениях, исключающих попадание прямых солнечных лучей, на расстоянии не менее 1 м от отопительных приборов. Срок годности – 3 года с момента изготовления. «Ортосил» – силиконовый эластичный материал, применяемый в качестве эластичной подкладки в комбинированных базисах протеза по тем же показаниям, что и эладент. «Ортосил» представляет собой резиноподобный материал, хорошо соединяющийся с пластмассами «Этакрил», «Акрел», «Фторакс», «Акронил». Обладает высокой эластичностью, сохраняющейся в полости рта в течение длительного времени (около года). Перед нанесением «Ортосила» с внутренней поверхности пластмассового базиса снимают карборундовым камнем или фрезой слой пластмассы толщиной 1–1,5 мм. Затем на протез наносят слой силиконового оттискного материала и с его помощью получают функциональный оттиск. Очень важно, чтобы слой оттискного материала не был излишне утончен, ибо это приводит в дальнейшем к истончению слоя «Ортосила». Во избежание этого необходимо покрывать вестибулярную поверхность протеза полоской воска шириной 2 см и толщиной 1,5 мм. Эта восковая манжетка размягчается путем нагревания и приклеивается к наружной поверхности базиса протеза, отступив от его края на З мм. Она защищает наружную поверхность протеза и зубов от загрязнения оттискным материалом и задерживает часть стекающей массы, что необходимо при формировании края протеза. После тщательного оформления краев, протез извлекают из полости рта и гипсуют в кювету обратным способом так, чтобы линия разъема проходила немного выше базиса протеза, созданного оттиском и дополнительной моделировкой. Поверхность базиса, тщательно очищенную от оттискного материала и высушенную, смачивают при помощи ватного тампона 2–3 раза жидкостью–катализатором до появления липкости. Из тубы выдавливают необходимое количество пасты, к которой добавляют жидкость – катализатор из расчета 5–7 капель на каждое деление дозировочной шкалы. Приготовленную пасту укладывают на базис, кювету закрывают и подвергают прессованию и полимеризации. «Боксил» предназначен для изготовления боксерских индивидуальных защитных шин. Это пластмасса на основе наполненного силиконового каучука холодной вулканизации. Шины, изготовленные из «Боксила», обладают достаточной эластичностью и хорошо предохраняют ткани полости рта, губы и зубы боксера. В отличие от эластопласта шину из боксила готовят без термической обработки. Методика применения: получают оттиски с обеих челюстей и по ним готовят гипсовые модели, которые разобщают восковыми валиками, расположенными на боковых зубах, на 0,2–0,4 мм. Модели с валиками гипсуют в окклюдатор, моделируют шину из воска и гипсуют в кювету. По обычной методике выплавляют воск и заполняют кювету массой «Боксил», приготовленную следующим образом: на стеклянную пластинку выдавливают из тубы пасту (содержимое одной тубы), добавляют жидкость–катализатор (3–4 г на одну тубу). Массу тщательно перемешивают металлическим шпателем (от тщательности замешивания пасты с катализатором зависят эластичность и прочность получаемой шины). Полученную гомогенную массу закладывают в кювету, выдерживая её под прессом в течении 3–4 часов. Вынув шину из кюветы, помещают ее на ЗО мин. в слабый раствор гидрокарбоната натрия (1 чайная ложка на стакан воды) затем, выдерживают 24 часа в воде, моют с мылом и обрабатывают с помощью ножниц, карборундовых головок и фильцев. Эластичные пластмассы оказались незаменимыми для изготовления обтурирующих протезов при зияющих дефектах шейного отдела пищевода и глотки. Более современными материалами являются «ПМ–01», «Новус» и «Моллопласт–В». Пластмасса «ПМ–01» (Украина) состоит из порошка с жидкостью и представляет собой сополимер хлорвинила с бутилакрилатом. Подкладка из пластмассы «ПМ–01» отличается постоянной эластичностью, прочностью связи с базисом протеза и не теряет своих свойств в условиях полости рта. Применение мягкой подкладки из пластмассы «ПМ–01» предусматривает два способа: 1. Одновременная паковка «ПМ–01»и базисной пластмассы в тестообразном состоянии. 2. Нанесение мягкой подкладки на готовый протез. Данные способы реализуются по аналогии с пластмассой «Эладент». Следует помнить, что прочная связь базисной пластмассы с мягкой подкладкой из «ПМ–О1» получается только при контакте материалов в тестообразном состоянии, которое ползают по прилагаемой инструкций. Пластмасса «Новус–ТМ» (США) является полифосфазеновым флюороэластомером. Выпускается в виде пластин, ламинированных в полиэтилен, подлежащих хранению в холодильнике. Технология подкладки в принципе не отличается от таковой у большинства эластических материалов. Обязательным является изготовление прокладок, создающих пространство для «Новус–ТМ». Их готовят наподобие индивидуальных ложек из базисного воска, силиката, специальной бумаги, оловянной фольги, полистирола. Кроме того, необходимо между базисом протеза и пластинкой «Новус–ТМ» проложить слой свежего акрилового теста базисной пластмассы горячей полимеризации. Соответственно с базиса протеза ошлифовывается слой пластмассы. При этом остающийся жесткий слой не должен быть тоньше 1 мм. Сама прокладка имеет толщину 1,5 мм (на уровне гребня – 2,5–3 мм). Сторона пластинки «Новус–ТМ», которая будет укладываться на базис протеза, смачивается мономером. Полимеризацию предпочтительнее проводить, поместив кювету в воду при температуре 74°С на 8 часов. Можно выдержать кювету при этой температуре всего 2,5 часа, затем довести воду до кипения и кипятить 30 минут. Но первый способ предпочтительнее. При нем эластичность «Новус–ТМ» дольше сохраняется. Следует также отметить, что «Новус–ТМ» является дробителем жевательной нагрузки и по этим качествам превосходит акриловые и силиконовые материалы для прокладок. Силиконовая пластмасса «Моллопласт–В» (Германия) хорошо смачивается слюной, плотно прилегает к слизистой оболочке и, таким образом, способствует высокой адгезии протеза к протезному ложу и улучшению его фиксации. Материал инертен и не набухает в ротовой жидкости. Он не поддается воздействию флоры полости рта, не содержит пластификаторов, которые, как правило, вымываются. Поэтому сохраняет эластичность в течение ряда лет. «Моллопласт–В» прост в употреблении, поставляется в тестообразной, готовой к употреблению консистенции. Инициаторы, активаторы, ингибиторы. Для получения сополимеров используются радикальные и частично ионные инициаторы. Чаще других применяется перекись бензоила. Для получения стоматологических сополимеров при комнатной температуре широко используют окислительно–восстановительные системы, содержащие, кроме перекиси бензоила различные восстановители (активаторы), главным образом N, N–диметилпара–толуидин, растворимый в мономере., Вещества, дезактивирующие все имеющиеся в системе свободные радикалы, в результате чего мономеры не полимеризуются, называются ингибиторами. В качестве ингибитора чаще всего используют различные хиноны, главным образом гидрохинон. Наполнители, пластификаторы и красители. В сополимерные стоматологические пластмассы наполнители вводят для улучшения, физико–механических свойств, уменьшения усадки, повышения стойкости к воздействию биологических сред. В стоматологических сополимерах в основном применяют неорганические порошкообразные наполнители (различные виды кварцевой муки, силикагели, силикаты алюминия и лития, борсиликаты, различные марки мелкоизмельченного стекла, гидросиликаты, фосфаты). Введение в сополимерные композиции пластификаторов позволяет придать им пластичные свойства, а также стойкость к действию ультрафиолетовых лучей. В качестве пластификаторов, в стоматологических полимерах чаще всего используют многие эфиры различных кислот (диоктилфталаты, трикрезилфосфаты), а также низкомолекулярные полиэфиры. С целью придания эластичности пластмассам чаще всего используют дибутилфталат и диоктилфталат. Для придания сополимерным стоматологическим композициям цвета и оттенков имитирующих зубные ткани, слизистую оболочку, в их состав вводят различные красители и пигменты. Основными требованиями к ним являются – нетоксичность, равномерность распределения в сополимерной матрице, устойчивость в сохранении цвета под воздействием биологических сред. Физико–химические свойства сополимеров. Одним из основных качеств сополимерных материалов является водопоглощение. Полимер поглощает около 2% воды при 37°С. Водопоглощение может приводить к изменению геометрических форм базисных пластмасс, ухудшать механические свойства, способствовать инфицированию. Изменения размеров материалов, возникающие вследствие потери ими влаги, уплотнения при отвердении (полимеризации), называют усадкой, Может быть обратное явление, вызванное поглощением материалом влаги – набухание, приводящее к увеличению объема. Механические свойства сополимеров. Создание более совершенных базисных материалов проводят методом сшивания сополимерных молекул, метилметакрилата (например, акрел), получением сополимерпривитых композиций (акронил, фторакс), введением пластифицирующих добавок (акронил). Это способствует увеличению эластичности сополимера. Для создания эффектов внутренней пластификации часто используются процессы сополимеризации. Для оценки основных физико–механических свойств стоматологических сополимеров определяются следующие показатели: прочность на разрыв, относительное удлинение при разрыве, модуль упругости, прочность при изгибе, удельная ударная вязкость. Деформационно–прочностные свойства сополимерных стоматологических материалов в значительной степени изменяются под влиянием молекулярной, массы и разветвлений макромолекул, поперечных сшивок, содержания кристаллической фазы, пластификаторов и прививки различных соединений. Увеличение ударной прочности и эластичности хрупких сополимеров может быть достигнуто путем их совмещения с эластичными сополимерами. Теплофизические свойства сополимеров. К тепло–физическим свойствам сополимерных материалов относятся теплостойкость и тепловое расширение, теплопроводность. Величина теплостойкости определяет предельную температуру эксплуатации сополимерных стоматологических материалов. Введение в сополимерные стоматологические материалы неорганических наполнителей повышает теплостойкость, введение пластификаторов ее снижает. Рабочие температуры использования сополимеров, а также их механическая обработка должны быть ниже их теплостойкости. Тепловое расширение сополимеров, кроме объемных величин, характеризуется также величинами линейного расширения. Теплопроводность определяет способность материалов передавать тепло и зависит от природы сополимерной матрицы, природы и количества наполнителя (пластификатора). Старение и стабилизация сополимеров. В основе старения сополимеров и композиций на их основе лежат различные физико–химические процессы, связанные с разрывом микромолекулярных цепей и образованием более низкомолекулярных продуктов. Процессы эти называются деструкцией и протекают они в сополимерных стоматологических композициях под воздействием биологических сред, механических напряжений, значительных перепадов температур. Деструкция приводит к появлению хрупкости и гибкости сополимеров. Разрушение сополимерных материалов особенно быстро происходит в случае многократно повторяющихся напряжений для таких сополимеров, как базисные материалы. Весь комплекс перечисленных выше процессов, приводящих к ухудшению механических свойств сополимерных материалов, имеет общее название – старение сополимеров. Лабораторные занятия студенты отрабатывают на гипсовых моделях под руководством преподавателя и с помощью зубного техника. Студенты вместе с преподавателем производят приготовление пластмассового теста. Преподаватель раздает студентам тигли, зуботехнические шпателя, пластмассу холодного отвердения «Протакрил-М», стекла. В дальнейшем зубной техник демонстрирует паковку «Протакрила-М» на гипсовой модели. В процессе работы преподаватель консультирует и оценивает самостоятельную работу каждого студента группы и разъясняет причины допущенных ошибок и исправление неточностей при выполнении практического задания. После работы с пластмассой «Протакрил-М» студенты оформляют протокол лабораторного занятия. Порошок и жидкость тщательно смешивают в соотношении 2:1 в фарфоровом или стеклянном сосуде. Сосуд с массой накрывают крышкой и оставляют для набухания. Во время набухания массу 1-2 раза перемешивают металлическим шпателем. Массу считают готовой к формированию, когда она теряет липкость и не пристает к рукам. Полимеризацию пластмассы Протакрил-М можно осуществлять двумя способами:
В конце занятия преподаватель выставляет зачет за УИРС, оценку за устный или письменный ответ, за самостоятельную практическую работу, подписывает протокол лабораторного занятия, а также объявляет тему следующего занятия и вопросы для повторения. Пластмассы холодного отвердения (самотвердеющие). Полимеризация пластической массы может быть произведена без теплового воздействия. Для этого необходимо химическим путем вызвать распад молекул перекиси бензоила, находящейся в массе. С этой целью применяют различные химические активаторы – соли сульфиновых кислот, диметилпаратолуидин, третичные амины и т.д., выполняющие роль теплового фактора. При комнатной температуре они способны вызвать диссоциацию перекиси бензоила. Пластмассы, полимеризующиеся при комнатной температуре, называют самотвердеющими. В составе полимерных порошков самотвердеющих пластмасс содержание перекиси бензоила находится в пределах 1%, активатор же находится в мономере в количестве до 3%. Следовательно, принципиальная схема полимеризации самотвердеющих пластмасс будет следующей: Полимеризация самотвердеющих пластмасс имеет свои особенности: 1) по окончании полимеризации в массе остается до 5% мономера, что в 10 раз больше, чем при полимеризации под тепловым воздействием; 2) образующиеся полимерные цепи короче, чем при тепловой полимеризации; 3) при полимеризации самотвердеющей пластмассы выделяется большое количество тепла, что может вызвать образование в массе пор и раковин. Для удаления избытка тепла рекомендуется изделия опустить в холодную воду. Это относится главным образом к массивным конструкциям. При большом объеме полимеризующейся массы выделяется наиболее значительное количество тепла; 4) некоторые активаторы полимеризации (диметипаратолуидиин, паратолуосульфиновая кислота) являются химически нестойкими веществами в связи с чем через некоторое время пластмасса изменяет свой цвет. В последние годы предложены новые активаторы, лишенные отмеченных недостатков. К их числу относится третичный амин СН3∙С6Н4–SО2 (СН2)N∙СН3. Применение этого активатора увеличивает полноту полимеризации, вследствие чего количество остаточного мономера в пластмассе уменьшается до 1–2%. Изделия из таких самотвердеющих пластмасс отличаются большей плотностью, удовлетворительными физико–химическими свойствами. В стоматологии самотвердеющие пластмассы нашли применение при проведении различных вспомогательных работ (починки, исправления, протезов), а также имеют самостоятельное применение (пломбирование, изготовление временных шин, протезов и т.д.). Материалы для реставрации базисов съемных пластиночных протезов. Пластмасса «Протакрил» предназначена для реставрации базисов пластиночных съемных протезов, а также для изготовления ортодонтических и ортопедических аппаратов. Представляет собой быстротвердеющую массу на основе акриловых полимеров типа «порошок – жидкость». Материал позволяет производить реставрацию протеза без применения сложного оборудования и в присутствии больного. Порошок препарата – мелкодисперсный суспензионный ПММА, окрашенный в розовый цвет. Жидкость препарата является метиловым эфиром метакриловой кислоты, содержащим активатор полимеризации и стабилизированный гидрохиноном. В комплект к препарату прикладываются разделительный лак «Изокол» и дихлорэтановый клей. Для изготовления ортодонтических или ортопедических аппаратов снимают оттиск с помощью эластического материала. Затем отливают модель, которую покрывают изоляционным лаком. На модели припасовывают заранее приготовленные металлические детали ортодонтических или ортопедических аппаратов (арматура для фиксаторов, кламмеры, активные отростки, вестибулярные дуги, винты и др.), укладывают прямой формовкой полимер–мономерное тесто. «Протакрил–М» – быстротвердеющая «сшитая» масса. Применяется в стоматологической практике для изготовления временных пластиночных съемных зубных протезов, челюстно–лицевых и ортодонтических аппаратов, съемных шин при заболеваниях пародонта, для починок съемных протезов и других целей. Пластмасса нетоксична, не вызывает раздражения слизистой оболочки полости рта. Цвет полимеризата приближается к цвету тканей полости, рта. Пластмасса «Протакрил–М» – первый отечественный быстротвердеющий «сшитый» материал, представляющий полимерно–мономерную композицию. Введение в состав пластмассы сополимера фторкаучука с ММА, а также «сшивающего» агента, обусловило улучшение физико–химических свойств, в частности, увеличилась прочность на изгиб. «Протакрил–М» содержит меньшее количество остаточного мономера. Методика применения не отличается от рассмотренного «Протакрила». Следует отметить, что полимеризацию пластмассы «Протакрил–М» можно осуществлять двумя способами. При первом способе кювету с гипсом перед паковкой формовочной массой нагревают в сушильном шкафу до температуры 35–40ОС, а затем заполняют с избытком приготовленной массой и накрывают контрформой для прессования. Прессование производят медленно, чтобы масса заполнила всю полость гипсовой формы. Кювету после закрытия выдерживают под прессом в течении 30–40 мин. до полной полимеризации. По второму способу полимеризацию проводят в автоклаве под давлением 304 кПа и температуре до 140–145ОС в течение 25–30 мин. Основными и существенными недостатками пластмасс холодного отверждения являются, во–первых, наличие пористости сжатия в изделии и, во–вторых, высокое по сравнению с базисными материалами содержание остаточного мономера. Это, с одной стороны, делает данные пластмассы негигиеничными, а с другой стороны, они чаще других полимеров вызывают токсико–аллергические. Материалы для индивидуальных оттискных ложек. Индивидуальные оттискные ложки предназначены для получения функциональных оттисков при протезировании съемными пластиночными протезами, обычно при полной потере зубов. По материалам различают восковые, стенсовые и пластмассовые ложки. Индивидуальная ложка изготовленная из пластмассы отличается от восковой или стенсовой тем, что является универсальной, т.е. ею можно получить слепок любой пластической слепочной массой и любого вида оттиск: разгружающий, компрессионный, анатомический или функциональный. Размер и форма индивидуальной оттискной ложки диктуются формой и выраженностью альвеолярного отростка и топографией слизистой оболочки и переходной складки. Материалами для изготовления пластмассовых индивидуальных ложек служат быстротвердеющие пластмассы типа «Редонт», «Протакрил», «Протакрил–М», при помощи которых на гипсовой модели формируют ложку, необходимой конфигурации. Однако эти материалы имеют иное прямое назначение и не обладают необходимым комплексом свойств. Можно изготовить индивидуальную ложку из обычной базисной пластмассы («Этакрил», «Фторакс», «Акронил» и др.) по методике Б.Р. Вайнштейна, которая предусматривает изготовление ложки из воска и замену воска пластмассой. В нашей стране и за рубежом выпускается специальная пластическая масса для изготовления индивидуальных ложек, которая отличается пластичностью, достаточной прочностью и быстротой полимеризации. Освоен выпуск подобного материала под названием «Карбопласт». Карбопласт. Отличительной его особенностью является использование пластифицированного полимера дибутилфталата. Материал представлен в виде порошка (полимера) и жидкости (мономера), смешение которых в пропорции 3:1 (соответственно) образует тесто, полимеризующееся в течение 6–10 мин. Стандартные пластины для изготовления индивидуальных ложек выпускаются промышленностью под названием АКР–П. Эти так называемые «базисные пластинки» нашли также свое применение в качестве временного защитного приспособления при хирургических операциях на небе. Пластмасса АКР–П отличается более низкой температурой размягчения, чем целлулоид, что значительно облегчает ее нагрев, дальнейшее прессование и коррекцию. Индивидуальная ложка из пластины после предварительного нагревания ее над пламенем спиртовки готовится на гипсовой модели. В комплекте пластмассы АКР–П предусмотрены пластины для верхней и нижней челюстей. ЗАДАНИЯ ДЛЯ САМОКОНТРОЛЯ И САМОКОРРЕКЦИИ НАЧАЛЬНОГО УРОВНЯ ЗНАНИЙ 1. Прессование пластмассы проводят в стадии: 1)увлажненного порошка 2)набухающего порошка 3)тестообразной консистенции* 4)вязкой консистенции 5)резиноподобной консистенции 2. Выберите пластмассу для базисов: 1) Фторакс;* 2) Редонт; 3) Синма-м; 4) Протакрил-м; 5) Боксил. 3. Кювету с пластмассовым тестом в гипсовой форме поместили в кипящую воду. Какой вид пористости при этом появится? 1) Газовая;* 2) Гранулярная; 3) Пористость из-за отсутствия давления; 4) Мраморная. 4. Газовая пористость пластмассы образуется вследствие: 1) Избыточного давления; 2) Недостаточность давления; 3) Недостатка формовочной массы; 4) Недостаток мономера; 5) Быстрого повышения температуры.* 5. Гранулярная пористость возникает при следующих условиях: 1) Недостатке мономера;* 2) Избытке мономера; 3) Недостаточном давлении; 4) Избыточном давлении; 5) Нарушении режима полимеризации. 6. В ортопедической стоматологии базисные пластмассы чаще всего используют: 1) как моделировочный материал 2) для получения оттисков 3) как формовочный материал 4)как изолирующий материал 5) для изготовления базисов съёмных протезов* 7. Мономер акриловой пластмассы это: 1) метиловый эфир метакриловой кислоты* 2) смесь ацетона и этилового спирта 3) полиметилметакрилат 4) жидкий плексиглас 5) ацетонциангидрин 8. Полимер акриловой пластмассы это: 1) метиловый эфир метакриловой кислоты 2) смесь ацетона и этилового спирта 3) полиметилметакрилат* 4) жидкий плексиглас 5) ацетонциангидрин 9. Пористость сжатия возникает при: 1) недостаточном количестве мономера 2) недостаточном давлении или недостаточном количестве пластмассы* 3) чрезмерном испарении мономера 4) нарушении температурного режима полимеризации. 10. Назовите представителей базисных пластмасс горячего отверждения: 1) протакрил-м 2) акродент 3)редонт 4) этакрил* 5)панасил В случае, если студент оказался не готов к решению одного или нескольких заданий, он должен поповнить свой начальный уровень знаний из соответствующих источников информации. После проверки начального уровня знаний можно приступить к углублённому изучению данной темы. ЗАДАНИЯ ДЛЯ ОПРЕДЕЛЕНИЯ УРОВНЯ УСВОЕНИЯ ИЗУЧАЕМОЙ ТЕМЫ 1.Безцветная базисная пластмаса применяется для: 1) повышения эстетических характеристик протеза 2)снижения себестоимости протеза 3) повышения механических свойств протеза 4) снижения аллергенности протеза* 2. При осмотре протеза врач выявил белесоватые меловые полосы и белые пятна на наружной поверхности протеза. Какая причина появления таких недостатков? 1) Паковка пластмассы в стадии тянущихся нитей;* 2) Недостаточное количество мономера; 3) Недостаточное давление при формировании пластмассы; 4) Полимеризация пластмассы с резким нагревом воды; 5) Резкое охлаждение кюветы с протезом. 3. Какие эластичные подкладки рекомендовано применять для профилактики травмы тканей протезного ложа при изготовления базиса? 1) Бакрил; 2) Фторакс; 3) Редонт; 4) Этакрил; 5) ПМ-01.* 4. Внутренние напряжения в пластмассе возникают, когда: 1) охлаждение пластмассы проводилось неравномерно* 2) проводилось рессование недозрелого теста 3) проводилось прессование пластмассы в резиноподобной консистенции 4) прессование происходило при высокой температуре 5) применялся высокодисперсный порошок 5. На первом этапе полимеризации температуру повышают до: 1) 30-35 2) 40-45 3) 50-55 4)60-65* 5)70-75 6. При сухой полимеизации требуется температура: 1)120 2)140 3)150* 4)170 5)130 7. При сухой полимеизации требуется давление воздуха: 1) 1-2 атм. 2)2-3 атм 3) 3-4 атм 4) 4-5 атм* 5) 5-6 атм 8. Н втором этапе полимеризации базисных пластмасс горячего отверждения температуру доводят до: 1)80 2) 90 3)100 4)110 5)120 9.Какие надостатки самотвердеющих пластмасс 1)время полимеризации 2)высокое содержание остаточного мономера* 3)неравномерность полимеризации 4)образование раковин и пор 5)изменение цвета 10. Назовите самотвердеющие базисные пластмассы: 1) акрилоксид 2) акродент 3) протакрил 4) этакрил 5)фторакс |