Главная страница
Навигация по странице:

  • 6.5.1. Существуют два пути экзоцитоза - конститутивный и регулируемый [38]

  • 6.5.2. Регулируемый экзоцитоз - это локальный ответ плазматической мембраны и находящейся под ней цитоплазмы [39] Тучные клетки секретируют гистамин

  • 6.5.3. Существуют два вида эндоцитоза: пиноцитоз и фагоцитоз [40] В зависимости от размера образующихся пузырьков различают два типа эндоцитоза: пиноцитоз

  • 6.5.4. Пиноцитозные пузырьки образуют окаймленные ямки в плазматической мембране [41]

  • 6.5.6. Существуют по крайней мере два типа окаймленных пузырьков [43]

  • Молекулярная биология клетки. Том 1. Молекулярная биология клетки 2Molecular Bruce Alberts, Dennis Bray,Biology


    Скачать 25.6 Mb.
    НазваниеМолекулярная биология клетки 2Molecular Bruce Alberts, Dennis Bray,Biology
    АнкорМолекулярная биология клетки. Том 1.pdf
    Дата22.04.2017
    Размер25.6 Mb.
    Формат файлаpdf
    Имя файлаМолекулярная биология клетки. Том 1.pdf
    ТипДокументы
    #5292
    страница61 из 79
    1   ...   57   58   59   60   61   62   63   64   ...   79
    6.5.Перенос через мембрану макромолекул и частиц: экзоцитоз и эндоцитоз
    Транспортные белки опосредуют проникновение через клеточные мембраны многих полярных молекул небольшого размера, однако они не способны транспортировать макромолекулы, например белки, полинуклеотиды или полисахариды. Тем не менее в большинстве клеток макромолекулы могут как поглощаться, так и секретироваться, а некоторые специализированные клетки способны захватывать даже крупные частицы. Механизмы, с помощью которых клетки осуществляют эти процессы, сильно отличаются от механизмов, опосредующих транспорт

    408
    Рис. 6-68.
    Слипание и объединение бислоев при экзоцитозе и эндоцитозе. Внеклеточное пространство находится сверху; оно отделено от цитоплазмы (снизу) плазматической мембраной. Обратите внимание, что из-за наличия стадии слипания бислоев экзоцитоз и эндоцитоз не повторяют друг друга в обратном порядке: при экзоцитозе слипаются два монослоя плазматической мембраны, обращенные к цитоплазме, тогда как при эндоцитозе два наружных монослоя мембраны. В обоих случаях сохраняется асимметрический характер мембран и монослой, обращенный к цитоплазме, всегда контактирует с цитозолем. небольших молекул и ионов. При переносе макромолекул происходит последовательное образование и слияние окруженных мембраной пузырьков
    (везикул). Например, для того чтобы секретировать инсулин, клетки, продуцирующие этот гормон, упаковывают его в специализированные
    секреторные пузырьки.
    В ответ на внеклеточные сигналы эти пузырьки сливаются с плазматической мембраной и открываются во внеклеточное пространство, высвобождая при этом инсулин. Подобный процесс слияния называется экзоцитозом. Клетки способны также поглощать макромолекулы и частицы, используя сходный механизм, только в обратной последовательности. Поглощенное вещество постепенно окружается небольшим участком плазматической мембраны, который сначала впячивается, а затем отщепляется, образуя внутриклеточный пузырек, содержащий захваченный клеткой материал. Этот процесс называется эндоцитозом. Процессы экзоцитоза и эндоцитоза представлены для сравнения на рис. 6-68. Оба механизма включают слияние первоначально разделенных участков липидного бислоя и осуществляются по крайней мере в две стадии: на первой два бислоя склеиваются (слипание бислоев), а затем сливаются (слияние бислоев). Обе стадии, по-видимому, опосредуются специализированными белками, что будет обсуждаться ниже (см. разд. 6.5.16).
    Важная особенность как экзоцитоза, так и эндоцитоза заключается в том, что секретируемые или поглощаемые макромолекулы локализуются в пузырьках и обычно не смешиваются с другими макромолекулами или органеллами клетки. Пузырьки могут сливаться только со специфическими мембранами, что обеспечивает направленный перенос макромолекул между внеклеточным пространством и содержимым клетки.
    Аналогичный процесс осуществляется во время переноса новосинтезированных макромолекул из эндоплазматического ретикулума в аппарат
    Гольджи и затем к другим компартментам клетки (см. гл. 8). Хотя ясно, что быстрое и повсеместное образование и слияние пузырьков - это фундаментальная особенность всех эукариотических клеток, молекулярные механизмы, обеспечивающие приведение в действие и направление этого транспорта по специфическим путям, во многом еще требуют изучения.
    6.5.1. Существуют два пути экзоцитоза - конститутивный и регулируемый [38]
    Во всех эукариотических клетках транспортные пузырьки непрерывно переносят новые компоненты плазматической мембраны из аппарата Гольджи к плазматической мембране посредством экзоцитоза. В то же время клетки секретируют различные типы молекул с помощью процесса экзоцитоза. Некоторые из этих молекул могут оставаться на поверхности клетки и становятся частью клеточной мембраны, другие выходят во внеклеточный матрикс. При этом часть из них диффундирует во

    409
    внутритканевую жидкость и/или в кровь для питания или переноса сигнала к другим клеткам.
    Как описано в гл. 8, секретируемые белки синтезируются на рибосомах, связанных с мембранами шероховатого эндоплазматического ретикулума (ЭР). Эти белки проходят в полость ЭР и транспортируются к аппарату Гольджи с помощью отпочковавшихся от ЭР транспортных
    пузырьков.
    В аппарате Гольджи белки модифицируются, концентрируются, сортируются и затем упаковываются в пузырьки, которые отщепляются в цитозоль и в конце концов сливаются с мембраной. В отличие от макромолекул секретируемые молекулы малых размеров, например гистамин
    (см. ниже), активно транспортируются из цитозоля в уже сформировавшиеся пузырьки, где они зачастую связываются со специфическими макромолекулами (в случае гистамина - с протеогликанами) и в результате могут накапливаться в высокой концентрации, не создавая при этом чрезмерного осмотического градиента.
    Некоторые белки непрерывно секретируются производящими их клетками. При этом они упаковываются в транспортные пузырьки в аппарате Гольджи и затем переносятся непосредственно к плазматической мембране. В этом случае говорят о конститутивном пути секреции. В других клетках определенные белки и/или малые молекулы запасаются в специальных секреторных пузырьках, которые сливаются с плазматической мембраной только после получения клетки соответствующего сигнала извне. Этот процесс носит название регулируемого пути
    секреции
    (рис. 6-69). Конститутивный путь осуществляется во всех клетках, а регулируемый путь обнаружен главным образом в клетках, приспособленных для секреции производимых ими веществ в зависимости от определенных потребностей. Обычно это гормоны, нейротрансмиттеры или переваривающие ферменты. В таких специализированных секреторных клетках сигналом к секреции часто служит химический медиатор, например, гормон, связывающийся с рецепторами на клеточной поверхности. В результате происходит активация рецепторов, которая генерирует внутриклеточный сигнал, зачастую включающий кратковременное повышение концентрации свободного Са
    2+
    в цитозоле (см. разд. 12.3.7). С помощью неизвестного механизма этот сигнал (сигналы) инициирует процесс экзоцитоза, побуждая секреторные пузырьки к слиянию с плазматической мембраной и, таким образом, к высвобождению их содержимого во внеклеточное пространство.
    В процессе экзоцитоза мембраны пузырьков объединяются с плазма-
    Рис. 6-69.
    Два пути прохождения секретируемых белков. Некоторые секретируемые белки упаковываются в транспортные пузырьки и непрерывно секретируются (конститутивный путь). Другие содержатся в специальных секреторных везикулах и высвобождаются только в ответ на стимуляцию клетки внеклеточными сигналами (регулируемый путь). Конститутивный путь осуществляется во всех эукариотических клетках, тогда как регулируемый путь - только в клетках специализированных для секреции (секреторных клетках).

    410
    тической мембраной (см. рис. 6-68). По крайней мере в случае регулируемого пути белки и липидные компоненты секреторных мембран возвращаются позднее специфическим образом в первоначальное состояние посредством экзоцитоза, для того чтобы войти в состав новых секреторных пузырьков. Общая площадь мембраны секреторных пузырьков, временно включающейся в состав плазматической мембраны, может быть огромна: в ацинарной клетке поджелудочной железы, выделяющей пищеварительные ферменты, в состав апикальной плазматической мембраны (площадь которой составляет лишь 30 мкм
    2
    ) при стимулировании клетки к секреции включается до 900 мкм
    2
    везикулярной мембраны.
    6.5.2. Регулируемый экзоцитоз - это локальный ответ плазматической мембраны и находящейся под ней цитоплазмы [39]
    Тучные клетки
    секретируют гистамин (см. табл. 12-1) в ответ на связывание специфических лигандов с рецепторами на их поверхности. Именно гистамин, секретируемый тучными клетками ответствен за многие неприятные симптомы, такие, как зуд или чихание, сопровождающие аллергические реакции. Если тучные клетки проинкубировать в среде, содержащей растворимый стимулятор, то экзоцитоз наблюдается по всей клеточной поверхности (рис. 6-70). Если же стимулирующий лиганд искусственно связан с твердой гранулой, так что он может взаимодействовать только с небольшим участком поверхности тучной клетки, экзоцитоз ограничивается местом контакта с гранулой (рис. 6-
    71). Ясно, что тучная клетка не отвечает на стимуляцию как нечто целое: активация рецепторов, внутриклеточные сигналы как результат этой активации и последующий экзоцитоз, очевидно, происходят лишь в том участке клетки, который подвергается стимуляции. Это свидетельствует о важном свойстве плазматической мембраны: отдельные ее участки могут функционировать независимо от остальной мембраны. Как мы видим, это свойство одинаково важно как для экзоцитоза, так и для эндоцитоза.
    6.5.3. Существуют два вида эндоцитоза: пиноцитоз и фагоцитоз [40]
    В зависимости от размера образующихся пузырьков различают два типа эндоцитоза: пиноцитоз (от греч. ріnо - пью + kitos - клетка), предполагающий поглощение жидкости и растворенных веществ с помощью небольших пузырьков (150 нм в диаметре), и фагоцитоз (от греч. phagos - пожирающий + kitos - клетка), означающий поглощение больших частиц, таких, как микроорганизмы или обломки клеток. В этом случае образуются крупные пузырьки, называемые фагосомами, или вакуолями (с диаметром, как правило, > 250 нм).
    Жидкость и растворенные вещества непрерывно поглощаются большинством эукариотических клеток посредством пиноцитоза, тогда как большие частицы захватываются в основном специализированными клетками - фагоцитами. По этой причине для большинства клеток термины
    «пиноцитоз» и «эндоцитоз» обычно употребляются в одном и том же смысле.
    Большинство частиц и молекул, поглощенных клеткой посредством фагоцитоза или пиноцитоза заканчивают свой путь в лизосомах.
    Большие частицы включаются в фагосомы, которые затем, видимо, сливаются с лизосомами, образуя фаголизосомы. Жидкость и макромолекулы, поглощенные при пиноцитозе, первоначально переносятся в проме-
    Риc 6-70.
    Электронные микрофотографии, показывающие экзоцитоз в тучных клетках крысы. А. Клетка не подвергалась стимуляции. Б. Клетка активировалась внеклеточным лигандом с целью вызвать секрецию запасенного в ней гистамина. Пузырьки, содержащие гистамин, выглядят темными, а пузырьки, освободившиеся от него, - светлыми. То, что остается в пузырьках после секреции гистамина, представляет собой сеть из протеогликанов, с которыми в норме связан запасаемый гистамин. Если секреторный пузырек слился с плазматической мембраной, то его собственная мембрана часто служит после этого мишенью для слияния с другими секреторными пузырьками. Таким образом, множество секреторных пузырьков в тучных клетках открывается во внеклеточное пространство через другие открывшиеся пузырьки. В результате клетка (Б)
    содержит несколько больших полостей, образованных слившимися друг с другом мембранами множества опорожненных пузырьков, составляющих теперь с плазматической мембраной единое целое. Эти полости не всегда оказываются в одной плоскости сечения клетки. (По D. Lawson et al., J.
    Exp. Med., 142, 391-402, 1975, с разрешения Rockefeller University Press.)

    411
    Рис. 6-71.
    Электронная микрофотография тучной клетки, активированной с целью вызвать секрецию гистамина. Активация проводилась с помощью стимулятора, «пришитого» к твердой грануле. Экзоцитоз идет только в той области клетки, которая контактирует с гранулой. (По D.
    Lawson et al., J. Cell. Biol., 79, 394-400, 1978, с разрешения Rockefeller University Press.) жуточные мембраносвязанные органеллы, называемые эндосомами, откуда они в конце концов либо переходят в лизосомы, либо специфическим образом возвращаются обратно. Поскольку в лизосомах имеются разнообразные гидролитические ферменты (см. разд. 8.8.1), большая часть материала, содержащегося в фагосомах и эндосомах, слившихся с лизосомами, быстро разрушается, низкомолекулярные продукты распада, такие, как аминокислоты, сахара и нуклеотиды, транспортируются через мембрану лизосомы в цитозоль, где они могут быть использованы клеткой.
    Большинство же мембранных компонентов эндоцитозных пузырьков возвращаются с помощью экзоцитоза из фагосом и эндосом и повторно утилизируются в плазматической мембране.
    6.5.4. Пиноцитозные пузырьки образуют окаймленные ямки в плазматической мембране [41]
    Практически все эукариотические клетки непрерывно поглощают кусочки своих мембран в виде небольших эндоцитозных
    (пиноцитозных) пузырьков, которые впоследствии возвращаются на клеточную поверхность. Этот цикл эндоцитоза начинается в специализированных областях плазматической мембраны, называемых окаймленными ямками. На обычных электронных микрофотографиях эти области выглядят как впячивания плазматической мембраны, окаймленные щетиноподобной структурой на цитоплазматической стороне. В различных клетках такие структуры занимают около 2% общей площади плазматической мембраны. Время жизни окаймленных ямок невелико: формируются они примерно в течение минуты, затем втягиваются в клетку и, сужаясь у основания, отщепляются, образуя окаймленные пузырьки
    (рис. 6-72). Установлено, что из плазматической мембраны фибробластов, растущих в культуре, в течение каждой минуты отщепляется примерно
    2500 окаймленных пузырьков. Время их жизни оказалось даже меньше, чем у окаймленных ямок: они очень быстро теряют свою кайму и после этого могут сливаться с эндосомами. Содержимое этих эндоцитозных пузырьков в конце концов попадает в лизосомы либо возвращается в прежнее состояние.
    Рис. 6-72.
    Электронные микрофотографии, иллюстрирующие вероятную последовательность событий при образовании окаймленного пузырька из окаймленной ямки. Показанные здесь окаймленные ямка и пузырьки участвуют в продвижении липопротеиновых частиц внутрь очень большого куриного ооцита при образовании желтка; они здесь несравненно крупнее, чем в клетках обычного размера. (С любезного разрешения М. М. Perry и
    А. В. Gilbert, J. Cell. Sci., 39, 257-272, 1979.)

    412
    6-30
    6.5.5. Окаймленные ямки содержат клатрин [42]
    На электронных микрофотографиях образцов, полученных методом быстрого замораживания и глубокого травления, поверхность окаймленных ямок и пузырьков имеет вид сетки из многоугольников (рис. 6-73). Из чего же построена кайма и каковы ее функции? После того как окаймлённые пузырьки, образующиеся из окаймленных ямок, были выделены, обнаружилось, что их мембраны содержат несколько «мажорных» белков. Из них лучше всего охарактеризован клатрин - белковый комплекс, весьма консервативный в эволюции. Он состоит из трех длинных и трех коротких полипептидных цепей, образующих трехвалентный белковый комплекс (трискелион). Трискелионы формируют на цитоплазматической поверхности мембраны корзиноподобные сетчатые структуры из шестиугольников и пятиугольников (рис. 6-74). Остальные белки, более тесно связанные с мембраной окаймленных пузырьков, необходимы для связывания клатриновой оболочки с пузырьком и для улавливания различных рецепторов плазматической мембраны (см. ниже).
    Предполагают, что впячивание окаймленной ямки осуществляется за счет сил, возникающих при ассоциации клатрина с другими белками оболочки, находящимися на цитоплазматической поверхности плазматической мембраны. После формирования окаймленного пузырька клатрин вместе с ассоциированными белками отделяется от мембраны пузырька и возвращается в плазматическую мембрану для образования новых окаймленных ямок. Однако остается неясным, каким образом индуцируется образование окаймленной ямки, как окаймленная ямка превращается в окаймленный пузырек и каким образом происходит отделение этой оболочки от пузырька. Интересно, что один из белков, относящихся к семейству hsp 70 (белков теплового шока), действует in vitro как АТРаза, удаляющая клатриновую оболочку с пузырьков (см. разд.
    8.8.6). Видимо, должен существовать некий механизм, контроли-
    Рис. 6-73
    . Электронная микрофотография многочисленных окаймленных ямок и пузырьков на внутренней поверхности плазматической мембраны фибробластов в культуре. Клетки были быстро заморожены в жидком гелии, подвергнуты скалыванию и затем глубокому травлению, чтобы сделать видимой цитоплазматическую поверхность плазматической мембраны. (По J. Heuser, J.Cell. Biol., 84, 560-583, 1980, с разрешения
    Rockefeller University Press.)
    Рис. 6-74.
    Структура клатриновой оболочки. А. Электронные микрофотографии клатриновых трискелеонов, оттененных платиной. Каждый трискелеон состоит из трех тяжелых и трех легких полипептидных цепей клатрина. Естественно, эти детали на микрофотографиях не видны. Б.
    Трехмерная модель клатриновой оболочки. 36 трискелеонов образуют сеть из 12 пятиугольников и 8 шестиугольников. Концы двух трискелеонов отмечены на фотографии. Обратите внимание, что каждая ножка трискелеона проходит вдоль двух соседних граней многоугольника и затем поворачивает внутрь, так что их N-концевые домены (черные кружки) образуют внутренний остов оболочки. То, что гибкие концы трискелеонов перекрываются друг с другом, обеспечивает как механическую прочность, так и подвижность всей структуры. Клатриновые оболочки других размеров и форм сконструированы аналогичным образом из 12 пятиугольников и различного числа шестиугольников. - Ungewickell и D. Branton,
    Nature, 289, 420-422, 1981; Б - G.P.A. Vigers et al., EMBO J., 5, 2079-2085, 1986.)

    413
    рующий преждевременное удаление клатриновой оболочки с окаймленной ямки до ее превращения в пузырек, поскольку оболочка на ямке существует намного дольше.
    6.5.6. Существуют по крайней мере два типа окаймленных пузырьков [43]
    В большинстве клеток именно окаймленные ямки и пузырьки осуществляют пиноцитозное поглощение внеклеточной жидкости и мембраносвязанных лигандов. Однако известны пути пиноцитоза, использующие и другие типы пузырьков. К сожалению, недостаток знаний о них в настоящее время не позволяет судить о том, насколько они важны. Некоторые эндотелиальные клетки, выстилающие мелкие кровеносные сосуды, видимо, транспортируют вещества из кровяного русла в окружающую внеклеточную жидкость с помощью эндоцитозных пузырьков, не имеющих клатриновой оболочки. Эти пузырьки курсируют по типу челнока от одной поверхности клетки к другой в процессе, называемом трансцитозом.
    Однако в большинстве других клеток, осуществляющих трансцитоз, этот процесс опосредуется окаймленными ямками и пузырьками (см. разд.
    6.5.11).
    Не все окаймленные пузырьки в клетке образуются из плазматической мембраны. В гл. 8 будет обсуждаться вопрос о том, что многие из пузырьков непрерывно образуются из эндоплазматического ретикулума и в аппарате Гольджи. Они осуществляют крупномасштабный везикулярный транспорт между этими и другими органеллами. Существуют по крайней мере два типа окаймленных пузырьков: 1) пузырьки с клатриновой оболочкой, участвующие как в эндоцитозе, так и в везикулярном транспорте из транс-сети Гольджи в эндолизосомы (см. ниже) и секреторные пузырьки (см. разд. 8.9); 2) пузырьки с неклатриновыми оболочками, осуществляющие везикулярный транспорт из эндоплазматического ретикулума в аппарат Гольджи, из одной цистерны аппарата Гольджи в другую и из аппарата Гольджи к плазматической мембране. Молекулы, образующие оболочку на этих пузырьках, пока неохарактеризованы. Окаймленные (клатриновые) пузырьки и ямки могут быть устроены гораздо сложнее, чем неклатриновые, поскольку они способны узнавать специфические макромолекулы для транспортировки их внутрь, тогда как неклатриновые пузырьки этого делать не могут.
    1   ...   57   58   59   60   61   62   63   64   ...   79


    написать администратору сайта