Главная страница

Нервная система. Нервная система (1). Нервной системы и высшей нервной деятельности


Скачать 2.09 Mb.
НазваниеНервной системы и высшей нервной деятельности
АнкорНервная система
Дата21.09.2022
Размер2.09 Mb.
Формат файлаdoc
Имя файлаНервная система (1).doc
ТипУчебно-методическое пособие
#688477
страница6 из 8
1   2   3   4   5   6   7   8
ТЕМА 11: Физиология промежуточного мозга, базальных ганглиев и лимбической системы.

Вопросы:

  1. Строение промежуточного мозга.

  2. Функции таламуса и гипоталамуса.

  3. Гипоталамус. Характеристика основных функций ядер гипоталамуса. Участие гипоталамуса в регуляции вегетативных функций.

  4. Морфофункциональные особенности стриапаллидарной системы.

  5. Базальные ганглии, их афферентные и эфферентные связи.

  6. Функции базальных ганглиев.

  7. Синдромы поражения базальных ганглиев.

  8. Морфофункциональные особенности лимбической системы.

  9. Функции лимбической системы.

  10. Роль лимбической системы в формировании мотиваций, эмоций, организации памяти. Участие лимбических структур в регуляции вегетативных функций.

ОСНОВНЫЕ ПОЛОЖЕНИЯ ТЕМЫ

Промежуточный мозг

Промежуточный мозг, диенцефалон, развивается из каудальной части переднего мозгового пузыря. Внутри него расположена полость третьего мозгового желудочка. В состав промежуточного мозга входят:

  1. Зрительный мозг

    • Таламус

    • Эпиталамус (надталамическая область – эпифиз, поводки, спайка поводков, треугольники поводков)

    • Метаталамус (заталамическая область – медиальные и латеральные коленчатые тела)

  2. Гипоталамус (подталамическая область)

  • Передняя гипоталамическая область (зрительная - зрительный перекрест, тракт)

  • Промежуточная гипоталамическая область (серый бугор, воронка, гипофиз)

  • Задняя гипоталамическая область (сосочковые тела)

  • Собственно подталамическая область (заднее гипоталамическое ядро Люизи)

Таламус

Зрительный бугор состоит из серого вещества, разделенного прослойками белого вещества на отдельные ядра. Происходящие их них волокна образуют лучистый венец, связывающий таламус с другими отделами мозга.

Таламус является коллектором всех афферентных (сенсорных) путей, идущих к коре головного мозга. Это ворота на пути к коре, через которые проходит вся информация от рецепторов.

Ядра таламуса:

  1. Специфические - переключение афферентной импульсации в строго локализованные зоны коры.

1.1. Релейные (переключательные)

1.1.1. Сенсорные (вентральные задние, вентральное промежуточное ядро) переключение афферентной импульсации в сенсорные зоны коры.

1.1.2. Несенсорные – переключение несенсорной информации в кору.

  • Лимбические ядра (передние ядра) – подкорковый центр обоняния. Передние ядра таламуса - лимбическая кора-гиппокамп-гипоталамус-мамиллярные тела гипоталамуса - передние ядра таламуса (круг ревербации Пейпеца - формирование эмоций).

  • Моторные ядра: (вентральные) переключают импульсы от базальных ганглиев, зубчатого ядра мозжечка, красного ядра в моторную и премоторную зону КГМ (передача сложных двигательных программ, образованных в мозжечке и базальных ганглиях).

1.2. Ассоциативные (интегративная функция, получают информацию от других ядер таламуса, посылают импульсы в ассоциативные участки КГМ, существует обратная связь)

1.2.1. Ядра подушки - импульсы от коленчатых тел и неспецифических ядер таламуса, в височно-теменно-затылочные зоны КГМ, участвующие в гностических, речевых и зрительных реакциях (интеграция слова со зрательным образом), восприятии схемы тела. Электростимуляция подушки ведёт к нарушению называния предметов, разрушение подушки – нарушение схемы тела, устраняет тяжёлые боли.

1.2.2. Медиодорсальное ядро – от гипоталамуса, миндалины, гиппокампа, таламических ядер, центрального серого вещества ствола, к ассоциативной лобной и лимбической коре. Формирование эмоций и поведенческой двигательной активности, участие в механизмах памяти. Разрушение – устраняет страх, тревогу, напряжённость, страдание от боли, но снижается инициатива, безразличие, гипокинезия.

1.2.3. Латеральные ядра – от коленчатых тел, вентрального ядра таламуса, к теменной коре (гнозис, праксис, схема тела.)

  1. Неспецифические ядра – (интраламинарные ядра, ретикулярное ядро) передача сигналов во все участки КГМ. Множество входящих и выходящих волокон, аналог РФ ствола – интегрирующая роль между стволом мозга, мозжечком и базальными ганглиями, новой и лимбической корой. Модулирующее влияние, обеспечивают тонкое регулирование поведения, «плавную настройку» ВНД.

Метаталамус Медиальные коленчатые тела вместе с нижними бугорками четверохолмия среднего мозга образуют подкорковый центр слуха. Они играют роль коммутационных центров для нервных импульсов, направляющихся в кору головного мозга. На нейронах ядра медиального коленчатого тела заканчиваются волокна латеральной петли. Латеральные коленчатые тела вместе с верхними бугорками четверохолмия и подушкой зрительного бугра являются подкорковыми центрами зрения. Они представляют собой коммуникационные центры, на которых заканчивается зрительный тракт, и в которых прерываются пути, проводящие нервные импульсы к зрительным центрам коры больших полушарий.

Эпиталамус Эпифиз связывают с теменным органом некоторых высших рыб и пресмыкающихся. У круглоротых он сохранил до известной степени строение глаза, у бесхвостых земноводных находится в редуцированном виде под кожей головы. У млекопитающих и человека Эпифиз имеет железистое строение и является железой внутренней секреции (гормон – мелатонин).

Эпифиз (шишковидная железа) относится к железам внутренней секреции. Он вырабатывает серотонин, из которого затем образуется мелатонин. Последний является антагонистом меланоцитостимулирующего гормона гипофиза, а также половых гормонов. Деятельность эпифиза зависит от освещенности, т.е. проявляется циркадность ритма, а это регулирует репродуктивную функцию организма.

Гипоталамус

Гипоталамическая область содержит сорок две пары ядер, которые делятся на четыре группы: переднюю, промежуточную, заднюю и дорсолатеральную.

Гипоталамус это вентральная часть промежуточного мозга, анатомически состоит из преоптическая области, области перекреста зрительных нервов, серого бугра и воронки, сосцевидных тел. Выделяют следующие группы ядер:

  • Передняя группа ядер (кпереди от серого ядра) – преоптические ядра, супрахиазматическое, супраоптическое, паравентрикулярное

  • Промежуточная (туберальная) группа (в области серого бугра и воронки) – дорсомедиальное, вентромедиальное, аркуатное (инфундибулярное), дорсальное подбугорное, заднее ПВЯ и собственные ядра бугра и воронки. Первые две группы ядер являются нейросекреторными.

  • Задняя – ядра сосочковых тел (подкорковый центр обоняния)

  • Субталамическое ядро Луиса (интреграционная функция

В гипоталамусе имеется самая мощная в мозге сеть капилляров и самый большой уровень локального кровотока до 2900 капилляров на мм квадратный). Высока проницаемость капилляров, т.к. гипоталамус имеет клетки избирательно чувствительные к изменениям параметров крови: изменениям рН, содержанию ионов калия, натрия, напряжению кислорода, углекислого газа. Супраоптическое ядро имеет осморецепторы, вентромедиальное ядро имеет хеморецепторы, чувствительные к уровню глюкозы, в переднем гипоталамусе рецепторы к половым гормонам. Есть терморецепторы. Чувствительные нейроны гипоталамуса не адаптируются, и находятся возбуждении до тех пор, пока та или иная константа в организме не нормализуется. Эфферентные влияния гипоталамус осуществляет с помощью симпатической и парасимпатической нервных систем, и эндокринных желёз. Здесь расположены центры регуляции различных видов обменов: белкового, углеводного, жирового, минерального, водного, а также центры голода, жажды, насыщения, удовольствия. Гипоталамическую область относят к высшим подкорковым центрам вегетативной регуляции. Вместе с гипофизом она образует гипоталамо-гипофизарную систему, посредством которой в организме сопрягается нервное и гормональное регулирование.

В гипоталамической области синтезируются эндорфины и энкефалины, входящие в состав естественной противоболевой системы и влияющих на психику человека.

Нервные пути к гипоталамусу идут от лимбической системы, КГМ, базальных ганглиев, РФ ствола. От гипоталамуса – в РФ, моторные и вегетативные центры ствола вегетативные центры спинного мозга, от мамиллярных тел к передним ядрам таламуса, далее в лимбическую систему, от СОЯ и ПВЯ к нейрогипофизу, от вентромедиального и инфундибулярного – к аденогипофизу, также имеются связи с лобной корой и полосатым телом.

Гормоны СОЯ и ПВЯ:

  1. АДГ (вазопрессин)

  2. Окситоцин

Гормоны медиобазального гипоталамуса: вентромедиального и инфундибулярного ядер:

  1. Либерины (рилизинги) кортиколиберин, тиролиберин, люлиберин, фоллилиберин, соматолиберин, пролактолиберин, меланолиберин

  2. Статины (ингибины) соматостатин, пролактостатин и меланостатин

Функции:

  1. Поддержание гомеостаза

  2. Интегративный центр вегетативных функций

  3. Высший эндокринный центр

  4. Регуляция теплового баланса (передние ядра - центр теплоотдачи, задние - центр теплообразования)

  5. Регулятор цикла «сон-бодрствование» и других биоритмов

  6. Роль в пищевом поведении (средняя группа ядер: латеральное ядро - центр голода и вентромедиальное ядро – центр насыщения)

  7. Роль в половом, агрессивно-оборонительном поведении. Раздражение передних ядер стимулирует половое поведение, раздражение задних ядер угнетает половое развитие.

  8. Центр регуляции различных видов обменов: белкового, углеводного, жирового, минерального, водного.

  9. Является элементом антиноцицептивной системы (центр удовольствия)

Базальные ганглии

К базальным ганглиям относятся следующие анатомические образования: полосатое тело (стриатум), состоящее из хвостатого ядра и скорлупы; бледный шар (паллидум), подразделяющийся на внутренний и внешний отделы; черная субстанция и субталамическое ядро Льюиса.

Функции БГ:

  1. Центры сложных безусловных рефлексов и инстинктов

  2. Участие в формировании условных рефлексов

  3. Координация тонуса мышц и произвольных движений. Контроль амплитуды, силы, направления движений

  4. Координация сочетанных двигательных актов

  5. Контроль за движением глаз (саккады).

  6. Программирование сложных целенаправленных движений

  7. Центры торможения агрессивных реакций

  8. Высшие психические функции (мотивации, прогнозирование, познавательная деятельность). Сложные формы восприятия внешней информации (например, осмысление текста)

  9. Участие в механизмах сна

Афферентные связи базальных ганглиев. Большая часть афферентных сигналов, приходящих к базальным ганглиям поступает в полосатое тело. Эти сигналы исходят почти исключительно из трех источников:

- от всех областей коры больших полушарий;

- от внутрипластинчатых ядер таламуса;

- от черной субстанции ( по дофаминэргическому пути).

Эфферентные волокна от стриатума идут к бледному шару и черной субстанции. От последней начинается не только дофаминэргический путь к полосатому телу, но и пути, идущие к таламусу.

От внутреннего отдела бледного шара берет начало самый важный из всех эфферентных трактов базальных ганглиев, заканчивающийся в таламусе, а так же в крыше среднего мозга. Посредством стволовых образований, с которыми связаны базальные ганглии, центробежные импульсы следуют к сегментарным двигательным аппаратам и мускулатуре по нисходящим проводникам.

- от красных ядер - по руброспинальному тракту;

- от ядра Даркшевича – по заднему продольному пучку к ядрам 3, 4,6 нервов и через его посредство к ядру вестибулярного нерва;

- от ядра вестибулярного нерва – по вестибулоспинальному тракту;

- от четверохолмия - по тектоспинальному тракту;

- от ретикулярной формации - по ретикулоспинальному тракту.

Таким образом, базальные ганглии играют, главным образом, роль промежуточного звена в цепи, связываемой двигательные области коры со всеми остальными ее областями.

В раннем филогенезе, когда кора головного мозга еще не была развита, стриопаллидарная система являлась главным двигательным центром, определяющим поведение животного. Чувствительные импульсы, притекающие из зрительного бугра, перерабатывались здесь в двигательные, направляющиеся к сегментарному аппарату и мускулатуре. За счет стрио-паллидарных аппаратов осуществлялись диффузные движения тела достаточно сложного характера: передвижения, плавание и др.

Одновременно с этим обеспечивалась поддержка общего мышечного тонуса, «готовность» сегментарного аппарата к действию, перераспределение мышечного тонуса при движениях.

При дальнейшей эволюции нервной системы ведущая роль в движениях переходит к коре головного мозга с ее двигательным анализатором и пирамидной системой. Наконец, у человека возникают сложнейшие действия, носящие целенаправленный, произвольный характер с тонкой дифференцировкой отдельных движений.

Тем не менее, стриопаллидарная система не утратила своего значения у человека. Она лишь переходит в соподчиненное, субординированное положение, обеспечивая «настройку» двигательных аппаратов, их «готовность к действию» и необходимый для быстрого осуществления движения мышечный тонус.

Становление функции базальных ганглиев в онтогенезе. Базальные ганглии развиваются интенсивнее, чем зрительные бугры. Бледное ядро миелинизируется раньше, чем полосатое тело и кора головного мозга. Установлено, что миелинизация в бледном шаре почти полностью заканчивается к 8 месяцам развития плода. В полосатом теле миелинизация начинается у плода, а заканчивается только к 2 месяцам жизни. Хвостатое тело в течение первых 2 лет жизни увеличивается в 2 раза, что связывают с развитием у ребенка автоматических двигательных актов.

Двигательная активность новорожденного в значительной мере связана с бледным ядром, импульсы от которого вызывают некоординированные движения головы, туловища и конечностей.

У новорожденного паллидум уже имеет связи со зрительным бугром, подбугровой областью и черной субстанцией. Связь паллидума со стриатутом развивается позже, часть стриопаллидарных волокон оказывается миелинизированная на первом месяце жизни, а другая часть - лишь к 6 месяцам и позже.

Считают, что такие акты, как плач, в моторном отношении осуществляются за счет одного паллидума. С развитием полосатого тела связано появление мимических движений, а затем умение сидеть и стоять. Так как стриатум оказывают тормозное влияние на паллидум, то создается постепенное разделение движений. Для того чтобы сидеть, ребенок должен уметь вертикально держать голову и спину. Это появляется у него к двум месяцам. Сидеть начинает к 6-8 месяцам.

В первые месяцы жизни у ребенка имеется отрицательная реакция опоры: при попытке поставить его на ножки он поднимает их и подтягивает к животу. Затем эта реакция становится положительной: при прикосновении к опоре ножки разгибаются. В 9 месяцев ребенок может стоять с помощью поддержки, в 10 месяцев он стоит свободно.

С 4-5 месячного возраста довольно быстро развиваются произвольные движения, но они еще длительное время сопровождаются многообразными дополнительными движениями.

Появление произвольных (таких как схватывание) и выразительных движений (улыбка, смех) связывают с развитием стриатной системы и двигательных центров коры больших полушарий. Громко смеяться ребенок начинает с 8 месяцев.

По мере роста и развития всех отделов головного мозга и коры больших полушарий движение ребенка становится менее обобщенными и более координированными. Только к концу дошкольного периода устанавливается определенное равновесие коркового и подкоркового двигательных механизмов.

Симптомы поражения базальных ганглиев.

Повреждение базальных ганглиев сопровождается самыми различными нарушениями движений. Из всех этих нарушений наиболее известен синдром Паркинсона.

Походка - осторожная, мелкими шажками, замедленная, напоминает старческую походку. Нарушена инициация движения: двинутся вперед удается не сразу. Но в дальнейшем больной не может сразу остановиться: его все еще продолжает тянуть вперед.

Мимика – крайне бедна, лицо принимает застывшее маскообразное выражение. Улыбка, гримаса плача при эмоциях с запозданием возникают и так же медленно исчезают.

Обычная поза - спина согнута, голова наклонена к груди, руки согнуты в локтевых, в лучезапястных, ноги – в коленных суставах (поза просителя).

Речь - тихая, монотонная, глухая, без достаточных модуляций и звучности.

Акинезия - (гипокинезия) – большие трудности в проявлении и двигательной инициации: затруднение при начале и завершения движения.

Ригидность мышц - постоянное увеличение мышечного тонуса, независящее от положения суставов и движений. Больной, приняв определенную позу, долгое время сохраняет ее, хотя бы она и была не удобной. «Застывает» в принятом положении - пластическая или восковая ригидность. При пассивных движениях мышцы расслабляются не постепенно, а прерывисто, как бы ступенчато.

Тремор покоя - дрожание, которое наблюдается в покое, выражено в дистальных отделах конечностей, иногда в нижней челюсти и отличается малой амплитудой, частотой и ритмичностью. Тремор исчезает во время целенаправленных движений и возобновляется после их окончания (отличие от мозжечкового тремора, появляющегося при движении и исчезающего в покое).

Синдром Паркинсона связан с разрушением пути (тормозного), идущего от черной субстанции к полосатому телу. В области полосатого тела из волокон этого пути выделяется медиатор дофамин. Проявление паркинсонизма и, в частности, акинезия успешно лечатся введением предшественника дофамина - дофа. Наоборот, разрушение областей бледного шара и таламуса (вентролатерального ядра), при котором прерываются пути к двигательной коре, приводит к подавлению непроизвольных движений, но не снимает акинезии.

При поражении хвостатого ядра развивается атетоз - в дистальных отделах конечностей наблюдаются медленные, червеобразные, извивающиеся движения с некоторыми интервалами, во время которых конечность принимает неестественные положения. Атетоз может быть ограниченным и распространенным.

При поражении скорлупы развивается хорея - отличается от атетоза быстротой подергиваний и наблюдаются в проксимальных отделах конечностей и на лице. Характерна быстрая сменяемость локализации судорог, то подергиваются мимические мышцы, то мускулатура ноги, одновременно глазные мышцы и рука и т. д. В выраженных случаях больной становится похожим на паяца. Часто наблюдается гримасничанье, причмокивание, расстраивается речь. Движения становятся размашистыми, избыточными, походка танцующей.

Лимбическая система

К лимбической системе относятся структуры, расположенные на медиальной поверхности больших полушарий головного мозга. Это образование представляет собой систему взаимосвязанных ядер и путей.

Термин «лимбическая система» был предложен П.Мак-Лином в 1952 году и отражает особенность её расположения в виде кольца на границе новой коры, отделяя её от ствола мозга.

ЛС – это функциональное объединение различных структур конечного (обонятельный мозг), промежуточного (зрительные бугры и гипоталамус) и среднего мозга (верхние бугорки), обеспечивающее эмоционально-мотивационные компоненты поведения и интеграцию висцеральных функций организма.

  • Древняя кора (парагиппокампальная извилина и крючок). Сводчатая извилина: поясная, парагиппокампальная и крючок.

  • Старая кора (гиппокамп, зубчатая и поясная извилины)

  • Новая кора (орбитальная поверхность лобной доли)

  • Подкорковые ядра (передние ядра таламуса, гипоталамус: МТ, миндалина, ядра перегородки, крыша среднего мозга, свод)

Афферентные связи: от РФ ствола через гипоталамус, от обонятельных рецепторов.

Эфферентные связи: через МТ гипоталамуса на ниже лежащие вегетативные и соматические центры ствола и спинного мозга, к новой коре (ассоциативная) – регуляция психических функций.

Характерной чертой функционирования ЛС является наличие хорошо выраженных кольцевых нейронных связей, объединяющих её структуры. Это сложные двухсторонние связи между собственными структурами, корой больших полушарий, гипоталамусом, таламусом, мозговым стволом и другими образованиями нервной системы в виде замкнутых кругов, что обеспечивает длительное поддержание возбуждения и взаимодействие всех отделов этой системы.

Два круга ревербации импульса:

  • Круг Пейпца: формирование эмоций, научения и памяти: гиппокамп – через свод – МТ гипоталамуса – передние ядра таламуса – поясная извилина – парагиппокампальная извилина – гиппокамп.

  • Формирование агрессивно-оборонительных, пищевых и сексуальных реакций: Миндалина – через терминальную полоску - МТ гипоталамуса - крыша среднего мозга – миндалина

Лимбическая система отвечает за вегетативную регуляцию, формирование эмоций, выполнение сложных поведенческих актов, направленных на продолжение рода и сохранение индивида.

Функции ЛС:

    1. Формирование эмоций

    2. Организация вегетативно-соматических компонентов эмоций (через гипоталамус) – изменение ЧСС, моторики ЖКТ.

    3. Участие в формировании кратковременной и долговременной памяти, обучении

    4. Центр обонятельной сенсорной системы

    5. Участие в формировании ориентировочно-исследовательской деятельности

    6. Организация простейшей мотивационно-информационной коммуникации (речи)

    7. Участие в механизмах сна

Эмоции – переживания, отражающие субъективное отношение человека к предметам внешнего мира и результатам собственной деятельности. Эмоции являются субъективным моментом мотиваций – состояний, запускающих и реализующих поведение, направленное на удовлетворение возникших потребностей. Эмоции сопровождаются периферическими (вегетативными и соматическими) проявлениями.

Электростимуляция миндалины у человека вызывает страх, гнев, ярость, удаление миндалин у обезьян снижало их агрессивность, повышало тревожность, неуверенность в себе, снижалась способность оценивать зрительную и слуховую информацию, нарушались зоосоциальные отношения в группе. Миндалина участвует в процессе сравнения конкурирующих мотиваций , выделении доминирующей, что определяет выбор поведения.

Поясная извилина - интегрирующая роль в формировании эмоций.

Вентральная лобная кора – при её поражении развивается эмоциональная тупость. Страдают эмоции, связанные с творчеством, отношениями людей, растормаживаются эмоции, связанные с удовлетворением биологических потребностей.

Тема 12: Вегетативная нервная система.

Вопросы:

  1. Морфология вегетативной нервной системы

  2. Структурно-функциональные особенности соматической и вегетативной нервных систем.

  3. Вегетативный ганглий. Строение, функции, особенности.

  4. Морфофункциональные особенности вегетативных волокон (преганлионарные и постганглионарные нервные волокна).

  5. Вегетативные рефлексы, их классификация и особенности.

  6. Симпатический отдел вегетативной нервной системы. Симпатические центры, эффекты симпатической регуляции.

  7. Адаптационно-трофическая роль симпатического отдела вегетативной нервной системы. Феномен Орбели-Гинецинского.

  8. Парасимпатический отдел вегетативной нервной системы. Парасимпатические центры, эффекты парасимпатической регуляции.

  9. Сравнительная характеристика симпатического и парасимпатического отделов вегетативной нервной системы. Синергизм и относительный антагонизм их влияний.

  10. Высшие центры регуляции вегетативных функций. Роль гипоталамуса, мозжечка, лимбической системы, ретикулярной формации и коры больших полушарий в регуляции вегетативных функций.

ОСНОВНЫЕ ПОЛОЖЕНИЯ ТЕМЫ

Вегетативная нервная система

Вегетативная нервная система (ВНС) в основном обеспечивает иннервацию внутренних органов. Она построена из специфических и неспецифических афферентных путей, нервных центров, заложенных на различных этажах центральной нервной системы, преганглоионарных эфферентных нервных волокон, ганглиев, расположенных вне центральной нервной системы и постганглионарных волокон, заканчивающихся в иннервируемых ими органах.

ВНС является частью единой нервной системы человека, осуществляет иннервацию сосудов, внутренних органов, сердца, ГМТ, желёз. ВНС регулирует трофику и обмен веществ, обеспечивает гомеостаз и приспособление внутренней среды к меняющимся условиям (механическая работа, приём пищи, недостаток воды, жара, холод), ведает ростом и размножением. Эта система имеет центральную часть (нервные центры) и периферическую (нервные волокна, сплетения).

Классификацию ВНС на 3 отдела предложил в 1903 году английский физиолог Ленгли. ВНС делится на:

  1. Симпатический отдел

  2. Парасимпатический отдел

  3. Метасимпатический (Энтеральный)

Отличия ВНС от соматической НС:

  1. Не находится под контролем сознания

  2. Возможность автономного функционирования (даже при полном нарушении связи с ЦНС)

  3. Генерализованный характер распространения возбуждения в периферическом отделе ВНС (особенно в симпатическом отделе).

  4. Наличие вегетативного ганглия в эфферентном отделе рефлекторной дуге. Таким образом, эфферентная часть ВНС представлена двумя нейронами: преганглионарный нейрон в пределах ЦНС (ствол мозга, спинной мозг), постганглионарный нейрон в вегетативном ганглии. Т.е. тела последних нейронов вегетативных дуг вынесены за пределы ЦНС.

  5. Низкая скорость проведения нервного импульса (преганглионарные волокна типа В, постганглионарные типа С)

  6. Ткани-мишени для ВНС: гладкомышечные клетки, поперенополосатая сердечная мышца, железистая ткань (для соматической - поперечнополосатая скелетная МТ). Симпатические волокна способны влиять на гликогенолиз в печени и липолиз в жировых клетках (метаболический эффект)

Обычно внутренние органы имеют двойную иннервацию: симпатическую и парасимпатическую, однако мочевой пузырь и ресничная мышца получают в основном парасимпатическую, сосуды, потовые железы, волоковые мышцы кожи, селезёнка, матка, мозг, органы чувств, надпочечники – только симпатическую.

Высшие вегетативные центры: структуры лимбической системы, базальные ганглии, КГМ, гипоталамус (передние ядра – зона парасимпатических ядер, задние - зона симпатических ядер), центральное серое вещество среднего мозга, ретикулярная формация (её нейроны формируют жизненно важные центры продолговатого мозга ССЦ, ДЦ).

Нервные центры (центральный отдел) симпатической нервной системы – промежуточно-латеральные ядра боковых рогов спинного мозга CVIII-LII-III

Нервные центры (центральный отдел) парасимпатической нервной системы – вегетативные ядра III пары (глазодвигательный нерв – Ядро Якубовича), VII (лицевой нерв – верхнее слюноотделительное), IX (языкоглоточный нерв – нижнее слюноотделительное), X (блуждающий нерв – заднее ядро), промежуточно-латеральные ядра спинного мозга SII-SIV

На уровне рабочих отделов заложены эфферентные клетки, аксоны которых идут не сразу к рабочему органу, в отличие от соматических, а прерываются в периферическом вегетативном ганглии. Здесь они переключается на последние нейроны, Волокна нейронов спинного мозга называются преганглионарными. Преганглионарные волокна переключаются в вегетативном ганглии на следующий нейрон, аксон которого носит название постганглионарного.

Симпатический вегетативный ганглий

Ганглий покрыт сверху капсулой. Здесь имеются следующие клетки:

  1. Чувствительные нейроны

  2. Эфферентные нейроны

  3. Хромаффинные клетки, выделяющие катехоламины (регулируют уровень возбудимости клеток узла.

Функции ганглия: проводниковая, замыкательная и рецепторная.

Нейроны вегетативного ганглия обладают теми же свойствами, что и нейроны центральной нервной системы.

Парасимпатический вегетативный ганглий

Ганглий покрыт сверху капсулой. В нём имеются следующие клетки:

  1. Чувствительные - клетки Догеля 2-го типа, их рецепторы могут быть механо-, термо-, хемочувствительными.

  2. Эффекторные нейроны – клетки Догеля 1-го типа, имеют много коротких дендритов и один аксон, уходящий за пределы ганглия.

  3. Вставочные – клетки Догеля 3-го типа.

  4. В ганглии имеются также хромаффинные клетки, выделяющие катехоламины, возможно, серотонин, АТФ, нейропептиды (регуляторная функция).

Физиология вегетативного ганглия

(переключение с преганглионарных волокон на постганглионарные)

  1. Низкая лабильность нейронов вегетативных ганглиев (10-15 импульсов в секунду), у соматических 200 имп/сек.

  2. Длительная синаптическая задержка, больше в 5 раз.

  3. Большая длительность ВПСП (20-50 мс), длительность потенциала действия 1,5-3 мс из-за продолжительной следовой гиперполяризации нейронов ганглия.

  4. Большую роль имеет пространственная и последовательная суммация.

  • Медиатор: в вегетативных ганглиях – преганглионарные нейроны выделяют АХ.

  1. На уровне ганглия хорошо развита конвергенция и дивергенция (мультипликация).

Симпатический отдел вегетативной нервной системы

Симпатические вегетативные ганглии расположены в симпатическом стволе, превертебральных узлах, узлах сплетений (брюшное аортальное, верхнее и нижнее подчревное).

Преганглионарные волокна короткие, сильно ветвятся. Постганглионарные волокна длинные тонкие многократно ветвятся, образуют сплетения. Хорошо развита мультипликация.

Медиатор постганглионарных адренергических симпатических волокон – НА (90%), адреналин (7%), дофамин (3%). Медиатор стойкий, длительно проявляет свою активность. НА связывается с α и β-адренорецепторами органов-эффекторов . Классификация основана на чувствительности их к фарм.препаратам: α-адренорецепторы блокируются фентоламином, β - пропранололом. Адренорецепторы имеются не только на органах, иннервируемых симпатическими волокнами (сердце, жировая ткань, сосуды, мышца-дилататор зрачка, матка, семявыносящий проток, кишечник) (α1 и β1), но и вне синапсов (на тромбоцитах, скелетные мышцы, эндокринные и экзокринные железы) (α2 и β2), а также на пресинаптческой мембране.

Передача возбуждения осуществляется быстрее, чем по симпатическому отделу. Влияния краткосрочные.

Влияния:

  1. Постоянное (тоническое)

  2. Фазное (пусковое) – резкое изменение функции (зрачковый рефлекс)

  3. Адаптационно-трофическое

Адапционно-трофическое влияние симпатической нервной системы Орбели-Гинецинского

Это приспособление обменных процессов к уровню функциональной активности. Идею о трофическом влиянии сформулировал И.П.Павлов. В опыте на собаке обнаружил симпатическую веточку, идущую к сердцу, раздражение которой вызывало усиление сердечных сокращений, без изменения частоты. Усиление сокращений утомлённой мышцы связано с активацией обменных (трофических) процессов под влиянием НА. Он активирует специфические рецепторы мембраны мышечных волокон, запускает каскад химических реакции в цитоплазме, ускоряющих синтез макроэргов, повышает возбудимость периферических рецепторов. Предполагается наличие трофогенов в нервных окончаниях. К трофогенам относятся нуклеотиды, некоторые аминокислоты, простагландины, катехоламины, серотонин, АХ, сложные липиды, ганглиозиды.

Парасимпатическая отдел вегетативной нервной системы

Парасимпатические вегетативные ганглии (далеко от ЦНС) расположены внутри органов (интрамурально) или околоорганно (ресничный, крылонёбный, ушной, подъязычный, поднижнечелюстной узлы), в узлах сплетений.

Преганглионарные волокна длинные, слабо ветвятся. Постганглионарные волокна короткие, мало ветвятся. Мультипликация развита слабо.

Медиатор постганглионарных парасимпатических волокон АХ.

Ацетилхолин на клетках-эффекторах связывается М-холинорецепторами. М-холинорецепторы возбуждаются мускарином, блокируются ядом кураре.

Ацетилхолин – нестойкий медиатор, основная часть разрушается ацетилхолинэстеразой до холина и ацетата, которые затем захватываются пресинаптической мембраной и используются для синтеза. Меньшая часть диффундирует в интерстиций и кровь.

Влияния:

  1. Постоянное (тоническое)

  2. Фазное (пусковое) – резкое изменение функции (торможение работы сердца, активация перистальтики, сужение зрачка)

Тонус вегетативных центров

Многие преганглионарные и ганглионарные нейроны обладают постоянной активностью, называемой тонусом. В покое частота электрических импульсов в вегетативных волокнах 0,1-5 имп/с. Тонус вегетативных нейронов подвержен суточным колебаниям: симпатотонус днём выше, ночью ниже, во время сна повышается тонус парасимпатических волокон. Симпатотонус обеспечивает постоянный тонус сосудов. Тоническое влияние блуждающего нерва (ваготонус) на сердце постоянно сдерживает ЧСС. Чем выше двигательная активность у человека, тем больше выражен парасимпатический тонус (уменьшение ЧСС у спортсменов). Причины вегетативного тонуса:

  1. Спонтанная активность. Высокий уровень спонтанной активности характерен для нейронов РФ.

  2. Поток афферентных импульсов от различных рефлексогенных зон.

  3. Действие БАВ и метаболитов

Вегетативные рефлексы. Классификация:

По уровню замыкания:

  1. центральные (соматовегетативный рефлекс- имеет общую афферентную часть с соматическим рефлексом)

  2. периферические, автономные (дуга рефлекса может замыкаться вне ЦНС в вегетативном ганглии интраорганно или экстраорганно, возможно существование аксон-рефлекса)

По расположению рецепторов:

  1. Интероцептивные (механо-, хемо-, термо-, ноце-, полимодальные рецепторы)

а) Висцеро-висцеральные (каротидный синус, солнечное сплетение, перистальтика)

б) Висцеро-кутанные (соответственно зонам Захарьина-Геда)

в) Висцеро-моторные (раздражение интерорецепторов может вызывать моторные реакции).

  1. Экстероцептивные - кутано-висцеральные ( воздействие на кожу ведёт к изменению сосудистого тонуса – дермографизм. Являются основой лечебного эффекта массажа, банок, горчичников).

  2. Проприоцептивные (физическая нагрузка ведёт к изменению работы сердца, дыхания, температуры, давления)



ТЕМА 13: Интегративная деятельность ЦНС. Условные рефлексы, торможение в коре. Условные рефлексы высоких порядков, динамический стереотип

ВОПРОСЫ:

  1. Учение об условных и безусловных рефлексах.

  2. Роль И. М. Сеченова и И.П. Павлова в создании учения о ВНД.

  3. Основные условия образования условных рефлексов.

  4. Механизмы образования условных рефлексов.

  5. Условные рефлексы высших порядков

  6. Виды торможения в коре головного мозга.

  7. Динамический стереотип.

ОСНОВНЫЕ ПОЛОЖЕНИЯ ТЕМЫ

Высшая нервная деятельность(ВНД) – совокупность нейрофизиологических процессов, обеспечивающих сознание, подсознательное усвоение поступившей информации и индивидуальное приспособительное поведение организма в окружающей среде.

Психическая деятельностьэто идеальная субъективно осознаваемая деятельность организма, осуществляемая с помощью нейрофизиологических процессов.

Таким образом, психическая деятельность осуществляется с помощью ВНД. Психическая деятельность протекает только в период бодрствования и осознается, а ВНД – и в период сна как неосознаваемая переработка информации, и в период бодрствования как осознаваемая и подсознательная переработка.

Все рефлексы делятся на 2 группы – безусловные и условные.

Безусловными рефлексами называются врожденные рефлексы. Эти рефлексы носят видовой характер. Условные рефлексы являются приобретенными, индивидуальными.

Важную роль в развитии представлений о ВНД сыграл И. М. Сеченов (1829 –1905). Свои взгляды и результаты экспериментальных исследований он изложил в 1863 г. в знаменитой книге «Рефлексы головного мозга».

Наблюдая за поведением и формированием сознания ребенка, ученый показал, как врожденные рефлексы с возрастом усложняются, вступают в разнообразные связи друг с другом и создают всю сложность человеческого поведения.

Основоположником учения о ВНД является знаменитый русский физиолог И.П. Павлов (1849 – 1936). Павлов открыл условные рефлексы и, используя их как объективный метод исследования психической деятельности (ВНД по И.П. Павлову), разработал основы учения о ВНД.

Высшая нервная деятельность, согласно И.П. Павлову, – это условно-рефлекторная деятельность ведущих отделов головного мозга, обеспечивающих адекватные и наиболее совершенные отношения целого организма к внешнему миру, т.е. поведение.

И.П. Павлов сформулировал основные законы ВНД на основе объективного метода изучения ВНД с помощью метода условных рефлексов. Он установил, что для образования условного рефлекса необходимо появление в ЦНС, в первую очередь в ее высших отделах, временной связи (замыкания) между нейронами, воспринимающими условное раздражение, и нейронами, входящими в дугу безусловного рефлекса.

Виды условных рефлексов

По отношению сигнального раздражителя к безусловному раздражителю все условные рефлексы делят на натуральные и искусственные (лабораторные).

I. Натуральные условные рефлексы формируются на сигналы, являющиеся естественными признаками подкрепляющего раздражителя. Например, запах, цвет мяса могут быть условными сигналами подкрепления мясом. Легко возникают условные рефлексы без специальной выработки на время. Так, прием пищи в одно и то же время ведет к выделению пищеварительных соков и других реакций организма (например, лейкоцитоз к моменту приема пищи).

II. Искусственными (лабораторными)называют условные рефлексы на такие сигнальные раздражители, которые в природе не имеют отношения к безусловному (подкрепляющему) раздражителю.

1. По сложности различают:

а) простые условные рефлексы, вырабатываемые на одиночные раздражители (классические условные рефлексы И.П. Павлова);

б) комплексные условные рефлексы, т.е. на несколько сигналов, действующих одновременно или последовательно; в) цепные рефлексы – на цепь раздражителей, каждый из которых вызывает свой условный рефлекс (динамический стереотип).

3. По выработке условного рефлекса на базе другого условного рефлексаразличают условные рефлексы второго, третьего и других порядков. Рефлексы первого порядка – это условные рефлексы, выработанные на базе безусловных рефлексов (классические условные рефлексы). Рефлексы второго порядка вырабатываются на базе условных рефлексов первого порядка, при которых безусловный стимул отсутствует. Рефлекс третьего порядка образуется на базе условного рефлекса второго порядка. Чем выше порядок условных рефлексов, тем труднее идет их выработка. У собак удается образовать условные рефлексы только до третьего порядка.

В зависимости от сигнальной системы различают условные рефлексы на сигналы первой и второй сигнальных систем, т.е. на слово. Последние вырабатываются только у человека: например, после образования условного зрачкового рефлекса на свет (сужение зрачка) произнесение слова «свет» также вызывает сужение зрачка у испытуемого.

Биологическое значение условных рефлексов состоит в их предупредительной роли, они имеют для организма приспособительное значение, готовя организм к будущей полезной поведенческой деятельности и помогая ему избежать вредных воздействий, адаптироваться к окружающей природной и социальной среде. Условные рефлексы формируются благодаря пластичности нервной системы.

Основные условия выработки условных рефлексов

1. Наличие двух раздражителей, один из которых безусловный (пища, болевой раздражитель и др.), вызывающий безусловно-рефлекторную реакцию, а другой - условный (сигнальный), сигнализирующий о предстоящем безусловном раздражении (свет, звук, вид пищи и т.д.);

2. Многократное сочетание условного и безусловного раздражителей;

3. Условный раздражитель должен предшествовать действию безусловного и в течение определенного времени сопровождать его;

4. По своей биологической целесообразности безусловный раздражитель должен быть сильнее условного,

5. Деятельное состояние центральной нервной системы.

Механизмы образования условных рефлексов

Физиологической основой для возникновения условных рефлексов служит образование функциональных временных связей в высших отделах ЦНС. Временная связь - это совокупность нейрофизиологических, биохимических и ультраструктурных изменений в мозге, возникающих в процессе совместного действия условного и безусловного раздражителей. Согласно И.П. Павлову, временная связь образуется между корковым центром безусловного рефлекса и корковым центром анализатора, на рецепторы которого действует условный раздражитель, т.е. связь замыкается в коре большого мозга (Рис. 50). В основе замыкания временной связи лежит процесс доминантного взаимодействия между возбужденными центрами. Импульсы, вызываемые условным сигналом с любого участка кожи и других органов чувств (глаз, ухо), поступают в кору большого мозга и обеспечивают там образование очага возбуждения. Если после условного раздражителя сигнала подается пищевое подкрепление (подкормка), то возникает более мощный второй очаг возбуждения в коре больших полушарий, к которому направляется ранее возникшее и иррадиирующее по коре возбуждение. Неоднократное сочетание в опытах условного сигнала и безусловного раздражителя облегчает прохождение импульсов от коркового центра условного сигнала к корковому представительству безусловного рефлекса – синаптическое облегчение – доминанта.

Нужно отметить, что очаг возбуждения с безусловного раздражителя всегда сильнее, чем с условного, так как безусловный раздражитель всегда биологически более значим для животного. Этот очаг возбуждения является доминантным, следовательно, притягивает к себе возбуждение от очага условного раздражения.

Нужно отметить, что образовавшаяся временная связь носит двусторонний характер. В процессе выработки условного рефлекса образуется двусторонняя связь между двумя центрами – корковым концом анализатора, на рецепторы которого действует условный раздражитель, и центром безусловного рефлекса, на базе которого вырабатывается условный рефлекс. Это было показано в опытах, где были взяты два безусловных рефлекса: мигательный рефлекс, вызываемый струей воздуха у глаз, и безусловный пищевой. При их сочетании выработался условный рефлекс, причем если подавали воздушную струю, то возникал пищевой рефлекс, а при даче пищевого раздражителя отмечалось мигание.

Условные рефлексы второго, третьего и более высоких порядков. Если выработать прочный условный пищевой рефлекс, например, на свет, то такой рефлекс является условным рефлексом первого порядка. На его базе можно выработать условный рефлекс второго порядка, для этого дополнительно применяют новый, предшествующий сигнал, например звук, подкрепляя его условным раздражителем первого порядка (светом).

В результате нескольких сочетаний звука и света звуковой раздражитель также начинает вызывать слюноотделение. Таким образом, возникает новая, более сложная опосредованная временная связь. Следует подчеркнуть, что подкреплением для условного рефлекса второго порядка является именно условный раздражитель первого порядка, а не безусловный раздражитель (пища), так как если и свет и звук подкреплять пищей, то возникнут два отдельных условных рефлекса первого порядка. При достаточно прочном условном рефлексе второго порядка можно выработать условный рефлекс третьего порядка.

Для этого используется новый раздражитель, например, прикосновение к коже. В этом случае прикосновение подкрепляется только условным раздражителем второго порядка (звуком), звук возбуждает зрительный центр, а последний - пищевой центр. Возникает еще более сложная временная связь. Рефлексы более высокого порядка (4, 5, 6 и т.д.) вырабатываются только у приматов и человека.
1   2   3   4   5   6   7   8


написать администратору сайта