Ответы Физиология. Нормальная физиология как научная основа медицины, её связь с другими науками
Скачать 1.62 Mb.
|
Дыхание 1. Условия образования отрицательного плеврального давления, его изменения во время вдоха и выдоха. Модель Дондерса. Внутриплевральное давление — давление в герметично замкнутой плевральной полости между висцеральными и париетальными листками плевры. В норме это давление является отрицательным относительно атмосферного. Внутриплевральное давление возникает и поддерживается в результате взаимодействия грудной клетки с тканью легких за счет их эластической тяги. При этом эластическая тяга легких развивает усилие, которое всегда стремится уменьшить объем грудной клетки. В формировании конечного значения внутриплеврального давления участвуют также активные силы, развиваемые дыхательными мышцами во время дыхательных движений. Наконец, на поддержание внутриплеврального давления влияют процессы фильтрации и всасывания внутриплевральной жидкости висцеральной и париетальной плеврами. Внутриплевральное давление может быть измерено манометром, соединенным с плевральной полостью полой иглой. В клинической практике у человека для оценки величины внутриплеврального давления измеряют давление в нижней части пищевода с помощью специального катетера, который имеет на конце эластичный баллон. Катетер проводят в пищевод через носовой ход. Давление в пищеводе примерно соответствует внутриплевральному давлению, поскольку пищевод расположен в грудной полости, изменения давления в которой передаются через стенки пищевода. При спокойном дыхании внутриплевральное давление ниже атмосферного в инспирацию на 6—8 см вод. ст., а в экспирацию — на 4—5 см вод. ст. Модель Дондерса - устройство для демонстрации роли внутриплеврального давления в дыхательном акте, представляющее собой препарат легких с трахеей, заключенный в прозрачную камеру; при уменьшении давления в камере относительно давления в легких происходит «вдох», при увеличении — «выдох». 2. Альвеолярный воздух, его объём, процентный состав, парциальное давление кислорода и углекислого газа. Механизм поддержания постоянства состава альвеолярного воздуха. АЛЬВЕОЛЯРНЫЙ ВОЗДУХ - воздух, остающийся в легочных альвеолах после нормального спокойного выдыхания и служащий непосредственно для газообмена с кровью, проникающей по капиллярам легочной артерии. Объем, слагаясь из резервного воздуха и остаточного воздуха, равняется в среднем 2.700—3.000 л. Состав альвеолярного воздуха существенно отличается от состава вдыхаемого и выдыхаемого из легких человека воздуха (табл. 8.1).
Если дыхательный объем увеличивается в несколько раз, например, при мышечной работе он достигает порядка 2500 мл, то объем анатомического мертвого пространства практически не влияет на эффективность альвеолярной вентиляции. Газы, входящие в состав атмосферного, альвеолярного и выдыхаемого воздуха, имеют определенное парциальное (partialis — частичный) давление, т. е. давление, приходящееся на долю данного газа в смеси газов. Общее давление газа обусловлено кинетическим движением молекул, воздействующих на поверхность раздела сред. В легких такой поверхностью являются воздухоносные пути и альвеолы. Согласно закону Дальтона, парциальное давление газа в какой-либо смеси прямо пропорционально его объемному содержанию. Альвеолярный воздух представлен смесью в основном О2, СО2 и N2. Кроме того, в альвеолярном воздухе содержатся водяные пары, которые также оказывают определенное парциальное давление, поэтому при общем давлении смеси газов 760,0 мм рт.ст. парциальное давление 02(Ро2) в альвеолярном воздухе составляет около 104,0 мм рт.ст., СО2(Рсо2) — 40,0 мм рт.ст. N2(PN2) — 569,0 мм рт.ст. Парциальное давление водяных паров при температуре 37 °С составляет 47 мм рт.ст. Необходимо учитывать, что приведенные в табл. 8.1 значения парциального давления газов соответствуют их давлению на уровне моря (Р - 760 мм рт.ст.) и эти значения будут уменьшаться с подъемом на высоту. Для поддержания определенного состава альвеолярного воздуха важна величина альвеолярной вентиляции и ее отношение к уровню метаболизма, т. е. количеству потребляемого О2 и выделяемого СО2. При любом переходном состоянии (например, начало работы и др.) необходимо время для становления оптимального состава альвеолярного воздуха. Главное значение имеют оптимальные отношения альвеолярной вентиляции к кровотоку. Состав альвеолярного воздуха измеряют во рту во вторую половину фазы выдоха с помощью быстродействующих анализаторов. В физиологической практике используются масс-спектрометр, который позволяет определять количество любого дыхательного газа; инфракрасный анализатор СО2 и анализатор О2. Анализаторы непрерывно регистрируют концентрацию газов в выдыхаемом воздухе. 3.Легочные объемы и емкости. Методы определения. Минутный объем дыхания и легочной вентиляции в покое и при физической нагрузке. Легочные объемы подразделяют на статические и динамические. Статические легочные объемы измеряют при завершенных дыхательных движениях без лимитирования их скорости. Динамические легочные объемы измеряют при проведении дыхательных движений с ограничением времени на их выполнение. Легочные объемы. Объем воздуха в легких и дыхательных путях зависит от следующих показателей: 1) антропометрических индивидуальных характеристик человека и дыхательной системы; 2) свойств легочной ткани; 3) поверхностного натяжения альвеол; 4) силы, развиваемой дыхательными мышцами. Дыхательный объем (ДО) — объем воздуха, который вдыхает и выдыхает человек во время спокойного дыхания. У взрослого человека ДО составляет примерно 500 мл. Величина ДО зависит от условий измерения (покой, нагрузка, положение тела). ДО рассчитывают как среднюю величину после измерения примерно шести спокойных дыхательных движений. Резервный объем вдоха (РОвд) — максимальный объем воздуха, который способен вдохнуть испытуемый после спокойного вдоха. Величина РОвд составляет 1,5—1,8 л. Резервный объем выдоха (РОвыд) — максимальный объем воздуха, который человек дополнительно может выдохнуть с уровня спокойного выдоха. Величина РОвыд ниже в горизонтальном положении, чем в вертикальном, уменьшается при ожирении. Она равна в среднем 1,0—1,4 л. Остаточный объем (ОО) — объем воздуха, который остается в легких после максимального выдоха. Величина остаточного объема равна 1,0—1,5 л. Исследование динамических легочных объемов представляет научный и клинический интерес и их, описание выходит за рамки курса нормальной физиологии. Легочные емкости. Жизненная емкость легких (ЖЕЛ) включает в себя дыхательный объем, резервный объем вдоха, резервный объем выдоха. У мужчин среднего возраста ЖЕЛ варьирует в пределах 3,5—5,0 л и более. Для женщин типичны более низкие величины (3,0—4,0 л). В Зависимости от методики измерения ЖЕЛ различают ЖЕЛ вдоха, когда после полного выдоха производится максимально глубокий вдох и ЖЕЛ выдоха, когда после полного вдоха производится максимальный выдох. Емкость вдоха (Евд) равна сумме дыхательного объема и резервного объема вдоха. У человека Евд составляет в среднем 2,0—2,3 л. Функциональная остаточная емкость (ФОЕ) — объем воздуха в легких после спокойного выдоха. ФОЕ является суммой резервного объема выдоха и остаточного объема. ФОЕ измеряется методами газовой дилюции, или разведения газов, и плетизмографически. На величину ФОЕ существенно влияет уровень физической активности человека и положение тела: ФОЕ меньше в горизонтальном положении тела, чем в положении сидя или стоя. ФОЕ уменьшается при ожирении вследствие уменьшения общей растяжимости грудной клетки. Общая емкость легких (ОЕЛ) — объем воздуха в легких по окончании полного вдоха. ОЕЛ рассчитывают двумя способами: ОЕЛ - ОО + ЖЕЛ или ОЕЛ - ФОЕ + Евд. ОЕЛ может быть измерена с помощью плетизмографии или методом газовой дилюции. Измерение легочных объемов и емкостей имеет клиническое значение при исследовании функции легких у здоровых лиц и при диагностике заболевания легких человека. Измерение легочных объемов и емкостей обычно производят методами спирометрии, пневмотахометрии с интеграцией показателей и бодиплетизмографии. Статические легочные объемы могут снижаться при патологических состояниях, приводящих к ограничению расправления легких. К ним относятся нейромышечные заболевания, болезни грудной клетки, живота, поражения плевры, повышающие жесткость легочной ткани, и заболевания, вызывающие уменьшение числа функционирующих альвеол (ателектаз, резекция, рубцовые изменения легких). Минутный объем дыхания (МОД) — это общее количество воздуха, которое проходит через легкие за 1 мин. У человека в покое МОД составляет в среднем 8 л*мин-1. МОД можно рассчитать, умножив частоту дыхания в минуту на величину дыхательного объема. Максимальная вентиляция легких — объем воздуха, который проходит через легкие за 1 мин во время максимальных по частоте и глубине дыхательных движений. Максимальная вентиляция вызывается произвольно, возникает во время работы, при недостатке содержания О2 (гипоксия), а также при избытке содержания СО2 (гиперкапния) во вдыхаемом воздухе. При максимальной произвольной вентиляции легких частота дыхания может возрастать до 50—60 в 1 мин, а ДО — до 2—4 л. В этих условиях МОД может доходить до 100—200 л*мин-1. Максимальную произвольную вентиляцию измеряют во время форсированного дыхания, как правило, в течение 15 с. В норме у человека при физической нагрузке уровень максимальной вентиляции всегда ниже, чем максимальная произвольная вентиляция. 4.Газообмен в легких. Процентное содержание и парциальное давление кислорода и углекислого газа в альвеолярном воздухе. Напряжение газов в артериальной и венозной крови. Газообмен в легких. В легких кислород из альвеолярного воздуха переходит в кровь, а углекислый газ из крови поступает в легкие. Движение газов обеспечивает диффузия. Согласно законам диффузии газ распространяется из среды с высоким парциальным давлением в среду с меньшим давлением. Парциальное давление – это часть общего давления, которая приходится на долю данного газа в газовой смеси. Чем выше процентное содержание газа в смеси, тем выше его парциальное давление. Для газов, растворенных в жидкости, употребляют термин «напряжение», соответствующий термину «парциальное давление», применяемому для свободных газов. В легких газообмен совершается между воздухом, содержащимся в альвеолах, и кровью. Альвеолы оплетены густой сетью капилляров. Стенки альвеол и стенки капилляров очень тонкие. Для осуществления газообмена определяющими условиями являются площадь поверхности, через которую осуществляется диффузия газов, и разности парциального давления (напряжения) диффундирующих газов. Легкие идеально соответствуют этим требованиям: при глубоком вдохе альвеолы растягиваются и их поверхность достигает 100–150 кв. м (не менее велика и поверхность капилляров в легких), существует достаточная разница парциального давления газов альвеолярного воздуха и напряжения этих газов в венозной крови. Связывание кислорода кровью. В крови кислород соединяется с гемоглобином, образуя нестабильное соединение – оксигемоглобин, 1 г которого способен связать 1,34 куб. см кислорода. Количество образующегося оксигемоглобина прямо пропорционально парциальному давлению кислорода. В альвеолярном воздухе парциальное давление кислорода равняется 100–110 мм рт. ст. При этих условиях 97 % гемоглобина крови связывается с кислородом. В виде оксигемоглобина кислород от легких переносится кровью к тканям. Здесь парциальное давление кислорода низкое, и оксигемоглобин диссоциирует, высвобождая кислород, что обеспечивает снабжение тканей кислородом. Наличие в воздухе или тканях углекислого газа уменьшает способность гемоглобина связывать кислород. Связывание углекислого газа кровью. Углекислый газ переносится кровью в химических соединениях гидрокарбоната натрия и гидрокарбоната калия. Часть его транспортируется гемоглобином. В капиллярах тканей, где напряжение углекислого газа высокое, происходит образование угольной кислоты и карбоксигемоглобина. В легких карбоангидраза, содержащаяся в эритроцитах, способствует дегидратации, что приводит к вытеснению углекислого газа из крови. Газы, входящие в состав атмосферного, альвеолярного и выдыхаемого воздуха, имеют определенное парциальное (partialis — частичный) давление, т. е. давление, приходящееся на долю данного газа в смеси газов. Общее давление газа обусловлено кинетическим движением молекул, воздействующих на поверхность раздела сред. В легких такой поверхностью являются воздухоносные пути и альвеолы. Согласно закону Дальтона, парциальное давление газа в какой-либо смеси прямо пропорционально его объемному содержанию. Альвеолярный воздух представлен смесью в основном О2, СО2 и N2. Кроме того, в альвеолярном воздухе содержатся водяные пары, которые также оказывают определенное парциальное давление, поэтому при общем давлении смеси газов 760,0 мм рт.ст. парциальное давление 02(Ро2) в альвеолярном воздухе составляет около 104,0 мм рт.ст., СО2(Рсо2) — 40,0 мм рт.ст. Напряжение газов в артериальной и венозной крови. Диффузия газов через альвеолярную мембрану происходит между альвеолярным воздухом и венозной, а также артериальной кровью легочных капилляров. Напряжение дыхательных газов в артериальной и венозной крови легочных капилляров
5.Транспорт кислорода кровью, кривая диссоциации оксигемоглобина, кислородная емкость крови. Газообмен и транспорт О2 Транспорт О2 осуществляется в физически растворенном и химически связанном виде. Физические процессы, т. е. растворение газа, не могут обеспечить запросы организма в О2. Подсчитано, что физически растворенный О2 может поддерживать нормальное потребление О2 в организме (250 мл*мин-1), если минутный объем кровообращения составит примерно 83 л*мин-1 в покое. Наиболее оптимальным является механизм транспорта О2 в химически связанном виде. Согласно закону Фика, газообмен О2 между альвеолярным воздухом и кровью происходит благодаря наличию концентрационного градиента О2 между этими средами. В альвеолах легких парциальное давление О2 составляет 13,3 кПа, или 100 мм рт.ст., а в притекающей к легким венозной крови парциальное напряжение О2 составляет примерно 5,3 кПа, или 40 мм рт.ст. Давление газов в воде или в тканях организма обозначают термином «напряжение газов» и обозначают символами Ро2, Рсo2. Градиент О2 на альвеолярно-капиллярной мембране, равный в среднем 60 мм рт.ст., является одним из важнейших, но не единственным, согласно закону Фика, факторов начальной стадии диффузии этого газа из альвеол в кровь. Транспорт О2 начинается в капиллярах легких после его химического связывания с гемоглобином. Гемоглобин (Нb) способен избирательно связывать О2 и образовывать оксигемоглобин (НbО2) в зоне высокой концентрации О2 в легких и освобождать молекулярный О2 в области пониженного содержания О2 в тканях. При этом свойства гемоглобина не изменяются и он может выполнять свою функцию на протяжении длительного времени. Гемоглобин переносит О2 от легких к тканям. Эта функция зависит от двух свойств гемоглобина: 1) способности изменяться от восстановленной формы, которая называется дезоксигемоглобином, до окисленной (Нb + О2 à НbО2) с высокой скоростью (полупериод 0,01 с и менее) при нормальном Рог в альвеолярном воздухе; 2) способности отдавать О2 в тканях (НbО2 à Нb + О2) в зависимости от метаболических потребностей клеток организма. Зависимость степени оксигенации гемоглобина от парциального давления Ог в альвеолярном воздухе графически представляется в виде кривой диссоциации оксигемоглобина, или сатурационной кривой (рис. 8.7). Плато кривой диссоциации характерно для насыщенной О2 (сатурированной) артериальной крови, а крутая нисходящая часть кривой — венозной, или десатурированной, крови в тканях. На сродство кислорода к гемоглобину влияют различные метаболические факторы, что выражается в виде смещения кривой диссоциации влево или вправо. Сродство гемоглобина к кислороду регулируется важнейшими факторами метаболизма тканей: Ро2 pH, температурой и внутриклеточной концентрацией 2,3-дифосфоглицерата. Величина рН и содержание СО2 в любой части организма закономерно изменяют сродство гемоглобина к О2: уменьшение рН крови вызывает сдвиг кривой диссоциации соответственно вправо (уменьшается сродство гемоглобина к О2), а увеличение рН крови — сдвиг кривой диссоциации влево (повышается сродство гемоглобина к О2) (см. рис. 8.7, А). Например, рН в эритроцитах на 0,2 единицы ниже, чем в плазме крови. В тканях вследствие повышенного содержания СО2 рН также меньше, чем в плазме крови. Влияние рН на кривую диссоциации оксигемоглобина называется «эффектом Бора». Рост температуры уменьшает сродство гемоглобина к О2. В работающих мышцах увеличение температуры способствует освобождению О2. Уменьшение температуры тканей или содержания 2,3-дифосфоглицерата вызывает сдвиг влево кривой диссоциации оксигемоглобина (см. рис. 8.7, Б). Метаболические факторы являются основными регуляторами связывания О2 с гемоглобином в капиллярах легких, когда уровень O2, рН и СО2 в крови повышает сродство гемоглобина к О2 по ходу легочных капилляров. В условиях тканей организма эти же факторы метаболизма понижают сродство гемоглобина к О2 и способствуют переходу оксигемоглобина в его восстановленную форму — дезоксигемоглобин. В результате О2 по концентрационному градиенту поступает из крови тканевых капилляров в ткани организма. Оксид углерода (II) — СО, способен соединяться с атомом железа гемоглобина, изменяя его свойства и реакцию с О2. Очень высокое сродство СО к Нb (в 200 раз выше, чем у О2) блокируют один или более атомов железа в молекуле гема, изменяя сродство Нb к О2. Под кислородной емкостью крови понимают количество Ог, которое связывается кровью до полного насыщения гемоглобина. При содержании гемоглобина в крови 8,7 ммоль*л-1 кислородная емкость крови составляет 0,19 мл О2 в 1 мл крови (температура 0oC и барометрическое давление 760 мм рт.ст., или 101,3 кПа). Величину кислородной емкости крови определяет количество гемоглобина, 1 г которого связывает 1,36—1,34 мл О2. Кровь человека содержит около 700—800 г гемоглобина и может связать таким образом почти 1 л О2. Физически растворенного в 1 мл плазмы крови О2 очень мало (около 0,003 мл), что не может обеспечить кислородный запрос тканей. Растворимость О2 в плазме крови равна 0,225 мл*л-1*кПа-1. Обмен О2 между кровью капилляров и клетками тканей также осуществляется путем диффузии. Концентрационный градиент О2 между артериальной кровью (100 мм рт.ст., или 13,3 кПа) и тканями (около 40 мм рт.ст., или 5,3 кПа) равен в среднем 60 мм рт.ст. (8,0 кПа). Изменение градиента может быть обусловлено как содержанием О2 в артериальной крови, так и коэффициентом утилизации О2, который составляет в среднем для организма 30— 40%. Коэффициентом утилизации кислорода называется количество О2, отданного при прохождении крови через тканевые капилляры, отнесенное к кислородной емкости крови. С другой стороны, известно, что при напряжении О2 в артериальной крови капилляров, равном 100 мм рт.ст. (13,3 кПа), на мембранах клеток, находящихся между капиллярами, эта величина не превышает 20 мм рт.ст. (2,7 кПа), а в митохондриях равна в среднем 0,5 мм рт.ст. (0,06 кПа). |