Физиология. Нормальная физиология ответы на экзамен с задачами. Нормальная физиология как предмет, её задачи и значение для медицины. Связь физиологии с другими науками. Роль физиологии в деятельности человека
Скачать 0.65 Mb.
|
Механизм восприятия частоты и силы звука. Звуковые ощущения: тональность звука, слуховая чувствительность, громкость звука. Адаптация. Бинауральный слух. Восприятие звуков различной высоты (частоты), согласно резонансной теории Гельмгольца, обусловлено тем, что каждое волокно основной мембраны настроено на звук определенной частоты. Так, звуки низкой частоты воспринимаются длинными волнами основной мембраны, расположенными ближе к верхушке улитки; звуки высокой частоты воспринимаются короткими волокнами основной мембраны, расположенными ближе к основанию улитки. При действии сложного звука возникают колебания различных волокон мембраны. В современной интерпретации резонансный механизм лежит в основе теории места, согласно которой в состояние колебаний вступает вся мембрана. Однако максимальное отклонение основной мембраны улитки происходит только в определенном месте. При увеличении частоты звуковых колебаний максимальное отклонение основной мембраны смещается к основанию улитки, где располагаются более короткие волокна основной мембраны, — у коротких волокон возможна более высокая частота колебаний. Возбуждение волосковых клеток именно этого участка мембраны при посредстве медиатора передается на волокна слухового нерва в виде определенного числа импульсов, частота следования которых ниже частоты звуковых волн (лабильность нервных волокон не превышает 800—1000 Гц). Частота воспринимаемых звуковых волн достигает 20 000 Гц. Таким способом осуществляется пространственный тип кодирования высоты частоты звуковых сигналов. При действии тонов примерно до 800 Гц, кроме пространственного кодирования, происходит еще и временное (частотное) кодирование, при котором информация передается также по определенным волокнам слухового нерва, но в виде импульсов (залпов), частота следования которых повторяет частоту звуковых колебаний. Отдельные нейроны на разных уровнях слуховой сенсорной системы настроены на определенную частоту звука, т.е. каждый нейрон имеет свой специфический частотный порог, свою определенную частоту звука, на которую реакция нейрона максимальна. Таким образом, каждый нейрон из всей совокупности звуков воспринимает лишь определенные достаточно узкие участки частотного диапазона, которые не совпадают между собой, а совокупности нейронов воспринимают весь частотный диапазон слышимых звуков, что и обеспечивает полноценное слуховое восприятие. Правомерность этого положения подтверждается результатами протезирования слуха человека, когда электроды вживляют в слуховой нерв, а его волокна раздражают электрическими импульсами разных частот, которые соответствуют звукосочетаниям определенных слов и фраз, обеспечивая смысловое восприятие речи. Тональность (частота) звука Человек может воспринимать звуки с частотой колебания от 16 до 20 000 Гц. Этот диапазон соответствует 10—11 октавам. Верхняя граница воспринимаемых звуков зависит от возраста: чем человек старше, тем она ниже; старики часто не слышат высоких тонов (например, звука, издаваемого сверчком). У многих животных верхняя граница слуха лежит значительно выше: у собаки, например, удается получить условные рефлексы на очень высокие, неслышимые человеком звуки. Различение частоты звука характеризуется тем минимальным различием по частоте двух звуков, которое еще улавливается человеком. При низких и средних частотах человек способен заметить различия в 1—2 Гц. Встречаются люди с абсолютным слухом: они способны точно узнавать и обозначать любой звук даже при отсутствии звука сравнения. Слуховая чувствительность. Минимальную силу звука, слышимого человеком в половине случаев его предъявления, называют абсолютной слуховой чувствительностью. Установлено, что пороги слышимости сильно изменяются в зависимости от частоты звука. В области частот от 1000 до 4000 Гц слух человека обладает максимальной чувствительностью. В этих пределах слышен звук, имеющий ничтожную энергию порядка 1*10-12 Втм2 (1 * 1 0-9 эргс-см2). При звуках ниже 1000 и выше 4000 Гц чувствитель- ность резко уменьшается: например, при 20 и при 20 000 Гц пороговая энергия звука должна быть около 1*10-3 Втм2 (1 эргс-см3) (нижняя кривая AEFGD на 225). При увеличении силы звука неизменной частоты можно дойти до такой силы, когда звук вызывает неприятное ощущение давления и даже боли в ухе. Звуки такой силы дадут, очевидно, верхний предел слышимости (кривая ABCD на 225) и ограничат область слухового восприятия. Внутри этой области лежат и так называемые речевые поля, в пределах которых по частоте и интенсивности распределяются звуки речи Д. Определение локализации источника звука возможно с помощью бинаурального слуха — способности слышать одновременно двумя ушами. Благодаря бинауральному слуху человек способен более точно локализовать источник звука, чем при моноауральном слухе, и определять направление звука. Для высоких звуков определение их источника обусловлено разницей силы звука, поступающего к обоим ушам, вследствие различной их удаленности от источника звука. Для низких звуков важной является разность во времени между приходом одинаковых фаз звуковой волны к обоим ушам. Определение местоположения звучащего объекта осуществляется либо путем восприятия звуков непосредственно от звучащего объекта (первичная локализация), либо путем восприятия отраженных от объекта звуковых волн (вторичная локализация, или эхолокация). При помощи эхолокации ориентируются в пространстве некоторые животные (дельфины, летучие мыши). Е. Слуховая адаптация— изменение слуховой чувствительности в процессе действия звука. Она складывается из соответствующих изменений функционального состояния всех отделов слухового анализатора. Ухо, адаптированное к тишине, обладает более высокой чувствительностью к звуковым раздражениям (слуховая сенситизация). При длительном слушании слуховая чувствительность снижается. Большую роль в слуховой адаптации играет ретикулярная формация, которая не только изменяет активность проводникового и коркового отделов слухового анализатора. Вестибулярный аппарат, его строение и функции. Рецепция положения и движения тела. Статические и статокинетические рефлексы вестибулярного аппарата. Вестибулярный анализатор анализирует информацию об ускорениях или замедлениях, возникающих в процессе прямолинейного или вращательного движения тела, а также при изменении положения головы в пространстве. Импульсы от вестибулорецепторов вызывают перераспределение тонуса скелетной мускулатуры. Среди вестибулярных реакций на первом месте находятся статистические и статокинетические реакции, обеспечивающие сохранение равновесия при изменении положения тела и его частей или при возникающих ускорениях во время перемещения тела в пространстве. В осуществлении этих реакций участвуют также и проприорецепторы мышц. Рецепторы статолитовых органов и полукружных каналов: Вестибулярный орган состоит из статолитового аппарата и трех полукружных каналов, расположенных во внутреннем ухе в трех взаимно перпендикулярных плоскостях: фронтальной, сагиттальной и горизонтальной. Возбуждающим фактором для вестибулорецепторов, представленных волосковыми клетками, является наклон волосков вследствие смещения отолитовой мембраны при линейных ускорениях. Рецепторные клетки, находящиеся в ампулах, возбуждаются при угловых ускорениях вследствие движения эндолимфы по полукружным каналам. Вестибулорецепторы относятся к вторичночувствующим и связаны через синапсы с афферентными волокнами нейронов вестибулярного ганглия, расположенного в височной кости. Вестибулярные ганглии и ядра: От вестибулярных ганглиев волокна вестибулярного нерва направляются в продолговатый мозг. Импульсы, приходящие по этим волокнам, поступают к нейронам бульбарного вестибулярного комплекса: предверное верхнее ядро Бехтерева, предверное латеральное ядро Дейтерса, ядро Швальбе. Из вестибулярных ядер возбуждения направляются по вестибулоспинальному тракту к мотонейронам мышц-разгибателей; непосредственно к мотонейронам шейного отдела спинного мозга; к глазодвигательным ядрам и мозжечку; к ретикулярной формации и через таламус к задней центральной извилине коры большого мозга. Функциональные связи между вышеуказанными структурами обеспечивают не только поддержание позы человека (сохранение равновесия), но и координацию двигательных актов при выполнении целенаправленной деятельности. Статические и статокинетические рефлексы: Эти рефлексы способствуют сохранению позы, в их осуществлении большое значение имеет продолговатый и средний мозг. Статические рефлексы возникают при изменении положения тела или его частей в пространстве: 1) при изменении положения головы в пространстве — это так называемые лабиринтные рефлексы. возникающие в результате раздражения рецепторов вестибулярного аппарата; 2) при изменении положения головы по отношению к туловищу — шейные рефлексы, с проприорецепторов мышц шеи и 3) при нарушении нормальной позы тела — выпрямительные рефлексы с рецепторов кожи, вестибулярного аппарата и сетчатки глаз. Например, при отклонении головы назад повышается тонус мышц-разгибателей спины, а при наклоне вперед — тонус сгибателей (лабиринтный рефлекс). Выпрямительные рефлексы — это последовательные сокращения мышц шеи и туловища которые обеспечивают возвращение тела в вертикальное положение теменем кверху. У человека они проявляются, например, во время ныряния. Статокинетические рефлексы компенсируют отклонения тела при ускорении или замедлении прямолинейного движения, а также при вращениях. Например, при быстром подъеме усиливается тонус сгибателей, и человек приседает, а при быстром спуске усиливается тонус разгибателей, и человек выпрямляется — это так называемый лифтный рефлекс. При вращении тела реакции противовращения проявляются в отклонении головы, тела и глаз в сторону, противоположную движению. Движение глаз со скоростью вращения тела, но в противоположную сторону и быстрое возвращение в исходное положение — нистагм глаз — обеспечивают сохранение изображения внешнего мира на сетчатке глаз и тем самым зрительную ориентацию. Обонятельный, вкусовой и висцеральный анализаторы. Классификация интерорецепторов, их роль в поддержании гомеостаза. Общей особенностью обонятельного и вкусового анализаторов является их способность к анализу внешних химических стимулов и формированию соответствующих обонятельных и вкусовых ощущений. Хемочувствительность рецепторов связана с высокой специфичностью и избирательностью по отношению к молекулам некоторых веществ. Постоянно действующий химический стимул достаточно быстро приводит к снижению его восприятия. Наконец, любое пищевое или непищевое вещество, попадающее в ротовую полость, неизбежно несет с собой и запаховый стимул. Обонятельные рецепторы расположены главным образом в верхней носовой раковине. Они являются первичными биполярными сенсорными клетками, имеющими два отростка: аксон и дендрит, несущий реснички. Запаховое вещество, попадая в носовую полость, вступает в контакт с мембраной ресничек. Сенсорная клетка может реагировать на несколько пахучих веществ, по которым можно построить спектр ответов одиночной обонятельной клетки. Аксоны этих клеток, направляются в обонятельную луковицу и оканчиваются на первичных дендритах отдельной митральной клетки обонятельной луковицы. Импульсы от обонятельных луковиц также поступают в гиппокамп и через амигдалярный комплекс к вегетативным ядрам гипоталамуса. Вкусовые рецепторы - специализированные сенсорные клетки, наряду с опорными и базальными клетками входящие в состав вкусовых почек. Всего у человека около 2000 вкусовых почек, которые располагаются на вкусовых сосочках языка, имеющих три разные формы: грибовидные, желобоватые и листовидные. Растворенные в воде вещества, попадающие на поверхность языка, диффундируют через пору вкусовых почек, которые образуют наружные концы сенсорных клеток. Сенсорные клетки относятся к вторичночувствующим рецепторам и отвечают на химическое раздражение формированием рецепторного потенциала. Рецепторный потенциал через синапсы вызывает возбуждение в афферентных волокнах черепных нервов, которые проводят его в мозг. Проводниковая и центральная часть вкусового анализатора. Афферентные волокна, проводящие возбуждения от вкусовых рецепторов, представлены нервом — барабанной струной (ветвь лицевого нерва), которая иннервирует переднюю и боковые части языка, а также языкоглоточным нервом, иннервирующим заднюю часть языка. Афферентные вкусовые волокна объединяются в солитарный тракт, который заканчивается в соответствующем ядре продолговатого мозга. В нем волокна образуют синапсы с нейронами второго порядка, аксоны которых направляются к вентральному таламусу. Аксоны нейронов третьего порядка проходят через внутреннюю капсулу таламуса и оканчиваются в постцентральной извилине коры большого мозга. В этой области выявлены высокоспецифичные вкусовые нейроны, реагирующие на раздражение веществами, обладающими одним вкусовым качеством. ВИСЦЕРАЛЬНЫЙ АНАЛИЗАТОР Огромная роль в интегральном функционировании сенсорных систем принадлежит интерорецепторам. Они воспринимают различные изменения внутренней среды организма и рефлекторно через ЦНС и вегетативный отдел нервной системы обеспечивают регуляцию работы всех внутренних органов, взаимосвязь и координацию их деятельности, направленную на поддержание гомеостаза и формирование защитно-приспосо-бительных реакций. Типичными в этом отношении являются рефлексы Геринга и Брейера (саморегуляция дыхания), рефлексы с прессе- и хеморецепторов каротидного синуса, рефлекторное выделение желудочного сока, рефлекторные акты мочеиспускания и дефекации, рефлекторные кашель и рвота и др. Морфологами описаны разнообразные интероцепторы, которые представлены свободными нервными окончаниями (дендриты нейронов спинальных ганглиев или клеток Догеля II типа периферических ганглиев вегетативной нервной системы), инкапсулированными [пластинчатые тельца (тельца Фатера-Пачини), колбы Краузе)], расположенными на особых гломусных клетках (рецепторы каротидного и аортального клубочков). Механорецепторы реагируют на изменение давления в полых органах и сосудах, их растяжение и сжатие. Хеморецепторы сообщают ЦНС об изменениях химизма органов и тканей. Их роль особенно велика в рефлекторном регулировании и поддержании постоянства внутренней среды организма. Возбуждение хеморецепторов головного мозга может быть вызвано высвобождением из нервных окончаний его структур гистамина, индольных соединений, изменением содержания в желудочках двуокиси углерода и другими факторами. Рецепторы каротид-ных клубочков реагируют на недостаток в крови кислорода, на снижение величины рН (в пределах 6,9—7,6) и повышение напряжения углекислоты. Терморецепторы ответственны за начальный, афферентный этап процесса терморегуляции. Сравнительно малоисследованными остаются пока осморецепторы, они обнаружены в интерстициальной ткани вблизи капилляре^ Проводниковый отдел висцерального анализатора представлен в основном блуждающим, чревным и тазовым нервами. Блуждающий нерв передает афферентное влияние в ЦНС по тонким волокнам с малой скоростью от практически всех органов грудной и брюшной полости, чревный нерв — от желудка, брыжейки, тонкого кишечника, а тазовый от органов малого таза. В составе этих нервов имеются как быстро-, так и медленно-проводящие волокна. Импульсы от многих интероцепторов проходят по задним и вентро-латеральным столбам спинного мозга. Интероцептивная информация поступает в ряд структур ствола мозга и подкорковые образования. Так в хвостатое ядро поступают сигналы от мочевого пузыря, в задне-вентральное ядро (VPL) — от многих органов грудной, брюшной и тазовой областей. Исследование нейронов таламуса показало, что на многие из них конвергируют как соматические, так и вегетативные влияния. Важную роль играет гипоталамус, где имеются проекции чревного и блуждающего нервов. В мозжечке обнаружены нейроны, реагирующие на раздражение чревного нерва. Высшим отделом висцерального анализатора является кора большого мозга. Двустороннее удаление коры сигмовидной извилины резко и надолго подавляет условные реакции, выработанные на механические раздражения желудка, кишечника, мочевого пузыря, матки. Еще более подавляются «висцерохимические» условные рефлексы. Лимбическая система имеет прямое отношение к висцеральным функциям. Лимбическая система и сенсомоторные зоны коры тесно связаны и совместно участвуют в условнореф-лекторном акте, начинающемся при стимуляции интероцепторов. Возбуждение некоторых интероцепторов приводит к возникновению четких, локализованных ощущений, как при растяжении стенок мочевого пузыря или прямой кишки. В то же время возбуждение интероцепторов сердца и сосудов, печени, почек, селезенки, матки и ряда других органов не вызывает ясных осознанных ощущений. Возникающие в этих случаях сигналы часто имеют подпороговый характер. И. М. Сеченов, придававший интероцепторам большое значение в формировании поведения, указывал на «темный, смутный», характер этих ощущений. Только при выраженном патологическом процессе в том или ином внутреннем органе эти сигналы доходят до сознания и часто сопровождаются болевыми ощущениями. Изменение состояния внутренних органов, регистрируемое висцеральным анализатором, даже если оно не осознается человеком, может оказывать значительное влияние на его настроение, самочувствие и поведение. Это связано с тем, что интероцептивные сигналы доходят до разных (и достаточно высоких) уровней ЦНС вплоть до коры большого мозга, что может приводить к изменениям активности многих нервных центров, выработке новых условнорефлекторных связей и т. д. Особенно важна роль интероцеп-тивных условных рефлексов в формировании сложных цепных реакций, составляющих пищевое, половое и другие формы поведения и являющихся важной частью жизнедеятельности человека и животных. Мышечная и суставная рецепция, её значение. В мышцах млекопитающих животных и человека содержится три типа специализированных рецепторов: первичные окончания мышечных веретен, вторичные окончания мышечных веретен и сухожильные рецепторы Гольджи. Эти рецепторы реагируют на механические раздражения и участвуют в координации движений, являясь источником информации о состоянии двигательного аппарата организма. Мышечные веретена. Мышечное веретено представляет собой небольшое продолговатое образование длиной несколько миллиметров, шириной десятые доли миллиметра, расположенное в толще мышцы. В разных скелетных мышцах число веретен на 1 г ткани варьирует от нескольких единиц до сотни. Каждое веретено покрыто капсулой. Внутри капсулы находится пучок мышечных волокон. Эти волокна называют интрафузальными в отличие от всех остальных волокон мышцы, которые носят название экстрафузальных. Веретена расположены параллельно экстрафузальным волокнам, поэтому при растяжении мышцы нагрузка на веретена увеличивается, а при сокращении — уменьшается. Различают интрафузальные волокна двух типов: 1) более толстые и длинные с ядрами, сосредоточенными в средней, утолщенной части волокна — ядерно-сумчатые и 2) более короткие и тонкие с ядрами, расположенными цепочкой — ядерно-цепочечные. На интрафузальных волокнах спирально расположены чувствительные окончания афферентных волокон группы 1а — так называемые первичные окончания, и чувствительные окончания афферентных волокон группы II — так называемые вторичные окончания. Импульсация, которая идет от веретен по афферентным волокнам группы 1а, в спинном мозге возбуждает мотонейроны своей мышцы и через тормозящий интернейрон тормозит мотонейроны мышцы-антагониста (реципрокное торможение). Афферентные волокна группы II возбуждают мотонейроны мышц-сгибателей и тормозят мотонейроны мышц-разгибателей. Веретена имеют и эфферентную иннервацию: интрафузальные мышечные волокна иннервируются аксонами, идущими к ним от Y-мотонейронов. Эти так называемые Y-эфферентные волокна. В расслабленной мышце импульсация, которая идет от веретен, невелика. Веретена реагируют импульсацией на удлинение (растяжение) мышцы. Активация Y-эфферентов приводит к повышению чувствительности веретен. Показано, что возбуждение α-мотонейронов сопровождается возбуждением Y-мотонейронов (α- Y-коактивация). Уровень возбуждения Y-системы тем выше, чем интенсивнее возбуждены α-мотонейроны данной мышцы, т. е. чем больше сила ее сокращения. При активном сокращении мышцы уменьшение ее длины оказывает на рецепторы веретена дезактивирующее действие, а возбуждение Y-мотонейронов, сопутствующее возбуждению α-мотонейронов, вызывает активацию рецепторов. Вследствие этого импульсация от рецепторов веретен во время движения зависит от нескольких факторов: соотношения длины мышцы, скорости ее укорочения и силы сокращения. Таким образом, веретена можно рассматривать как непосредственный источник информации о длине мышцы и ее изменениях, если только мышца не возбуждена. При активном состоянии мышцы необходимо учитывать влияние Y-системы. Во время активных движений Y-мотонейроны поддерживают импульсацию веретен укорачивающейся мышцы, что дает возможность рецепторам реагировать на неравномерности движения как увеличением, так и уменьшением частоты импульсации и участвовать таким образом в коррекции движений. Сухожильные рецепторы Гольджи. Они находятся в зоне соединения мышечных волокон с сухожилием и расположены последовательно по отношению к мышечным волокнам. Сухожильные рецепторы слабо реагируют на растяжение мышцы, но возбуждаются при ее сокращении. Интенсивность их импульсации примерно пропорциональна силе сокращения мышцы, что дает основание рассматривать сухожильные рецепторы как источник информации о силе, развиваемой мышцей. Идущие от этих рецепторов афферентные волокна относятся к группе Ib. На спинальном уровне они через интернейроны вызывают торможение мотонейронов собственной мышцы и возбуждение мотонейронов мышцы-антагониста. Суставные рецепторы. Они изучены меньше, чем мышечные. Известно, что суставные рецепторы реагируют на положение сустава и на изменения суставного угла, участвуя таким образом в системе обратных связей от двигательного аппарата и в управлении им. |