Физиология. Нормальная физиология ответы на экзамен с задачами. Нормальная физиология как предмет, её задачи и значение для медицины. Связь физиологии с другими науками. Роль физиологии в деятельности человека
Скачать 0.65 Mb.
|
Лимфообразование и лимфообращение. Значение лимфатической системы. Механизмы образования лимфы. Лимфа и ее движение В организме наряду с системой кровеносных сосудов имеется система лимфатических сосудов. Она начинается с разветвленной сети замкнутых капилляров, стенки которых обладают высокой проницаемостью и способностью всасывать коллоидные растворы и взвеси. Лимфатические капилляры впадают в лимфатические сосуды, по которым находящаяся в них жидкость — лимфа притекает к двум крупным лимфатическим протокам — шейному и грудному, впадающим в подключичные вены. В отличие от кровеносных сосудов, по которым происходит как приток крови к тканям тела, так и ее отток от них, лимфатические сосуды служат лишь для оттока лимфы, т. е. возвращают в кровь поступившую в ткани жидкость. Лимфатические сосуды являются как бы дренажной системой, удаляющей избыток находящейся в органах тканевой, или интерстициальной, жидкости. Важно, что оттекающая от тканей лимфа по пути к венам проходит через биологические фильтры — лимфатические узлы. Здесь задерживаются и не попадают в кровоток некоторые чужеродные частицы, например бактерии и т. п. Они поступают из тканей в лимфатические, а не в кровеносные капилляры вследствие более высокой проницаемости стенок первых по сравнению со вторыми. Состав и свойства лимфы Лимфа, собираемая из лимфатических протоков во время голодания или после приема нежирной пищи, представляет собой бесцветную, почти прозрачную жидкость, отличающуюся от плазмы крови в 3—4 раза меньшим содержанием белков. Лимфа грудного протока, а также лимфатических сосудов кишечника через 6—8 ч после приема жирной пищи непрозрачна, молочно-белого цвета, так как в ней содержатся эмульгированные жиры, всосавшиеся в кишечнике. Вследствие малого содержания белков вязкость лимфы меньше, а относительная плотность ниже, чем плазмы крови. Реакция лимфы щелочная. В лимфе содержится фибриноген, поэтому она способна свертываться, образуя рыхлый, слегка желтоватый сгусток. Лимфа, оттекающая от разных органов и тканей, имеет различный состав в зависимости от особенностей их обмена веществ и деятельности. Так, лимфа, оттекающая от печени, содержит больше белков, чем лимфа конечностей. Из лимфатических сосудов желез внутренней секреции оттекает лимфа, содержащая гормоны. В лимфе обычно нет эритроцитов, а есть очень небольшое количество зернистых лейкоцитов, которые выходят из кровеносных капилляров через их эндотелиальную стенку, а затем из тканевых щелей поступают в лимфатические капилляры. При повреждении кровеносных капилляров, в частности при действии ионизирующей радиации, проницаемость их стенок увеличивается и тогда в лимфе могут появляться эритроциты и зернистые лейкоциты в значительном количестве. В лимфе грудного протока имеется большое число лимфоцитов. Последнее обусловлено тем, что лимфоциты образуются в лимфатических узлах и из них с током лимфы переносятся в кровь. Образование лимфы Лимфообразование связано с переходом воды и ряда растворенных в плазме крови веществ из кровеносных капилляров в ткани, а из тканей в лимфатические капилляры. Стенка кровеносных капилляров представляет собой полупроницаемую мембрану. В ней имеются ультрамикроскопические поры, через которые происходит фильтрация. Величина пор в стенке капилляров разных органов, а следовательно, и проницаемость капилляров неодинаковы. Так, стенка капилляров печени обладает более высокой проницаемостью, чем стенка капилляров скелетных мышц. Именно этим объясняется тот факт, что примерно больше половины лимфы, протекающей через грудной проток, образуется в печени. Проницаемость кровеносных капилляров может изменяться в различных физиологических условиях, например под влиянием поступления в кровь так называемых капиллярных ядов (гистамин и др.). Вода и растворенные в ней низкомолекулярные вещества: неорганические соли, глюкоза, а также кислород и другие газы, находящиеся в плазме крови, могут легко переходить из крови в ткани через стенку артериального колена капилляра. Давление крови в артериальном колене капилляра, равное примерно 30—35 мм рт. ст., способствует переходу воды из плазмы крови в тканевую жидкость. Рефлекторная регуляция кровообращения. Рецепторы ССС. Влияние на гемодинамику коры больших полушарий. Сопряженные рефлексы ССС, их механизмы. Рефлекторные изменения Рефлекторные изменения сердечной деятельности можно вызвать раздражением рецепторов и других кровеносных сосудов. Например, при повышении давления в легочной артерии замедляется работа сердца. Можно изменить сердечную деятельность и путем раздражения рецепторов сосудов многих внутренних органов. Обнаружены также рецепторы в самом сердце: эндокарде, миокарде и эпикарде; их раздражение рефлекторно изменяет и работу сердца, и тонус сосудов. В правом предсердии и у устья полых вен имеются механорецепторы, реагирующие на растяжение (при повышении давления в полости предсердия или в полых венах). Залпы афферентных импульсов от этих рецепторов проходят по центростремительным волокнам блуждающих нервов и вызывают рефлекторное учащение сердечных сокращений. Импульсы, идущие в ЦНС от механорецепторов предсердий, влияют и на работу других органов. Так, при увеличенном наполнении левого предсердия кровью в 2—5 раз возрастает выделение мочи почками, что вызывает уменьшение объема крови и нормализацию наполнения предсердий. Классический пример вагального рефлекса описал в 60-х годах прошлого века Гольц: легкое поколачивание по желудку и кишечнику лягушки вызывает остановку сердца или замедление его сокращений. Остановка сердца при ударе по передней брюшной стенке наблюдалась также у человека. Центростремительные пути этого рефлекса идут от желудка и кишечника по чревному нерву в спинной мозг и достигают ядер блуждающих нервов в продолговатом мозге. Отсюда начинаются центробежные пути, образованные ветвями блуждающих нервов, идущими к сердцу. К числу вагальных рефлексов относится также глазосердечный рефлекс Ашнера (урежение сердцебиений на 10—20 в минуту при надавливании на глазные яблоки). Рефлекторное учащение Рефлекторное учащение и усиление сердечной деятельности наблюдается при болевых раздражениях и эмоциональных состояниях: ярости, гневе, радости, а также при мышечной работе. Изменения сердечной деятельности при этом вызываются импульсами, поступающими к сердцу по симпатическим нервам, а также ослаблением тонуса ядер блуждающих нервов. Условнорефлекторная регуляция сердечной деятельности Тот факт, что различные эмоции вызывают изменение сердечной деятельности, указывает на значение коры полушарий большого мозга в регуляции деятельности сердца. Доказательством этого является то, что изменения ритма и силы сердечных сокращений можно наблюдать у человека при одном упоминании или воспоминании о факторах, вызывающих у него определенные эмоции. Наиболее убедительные данные о наличии корковой регуляции деятельности сердца получены методом условного рефлекса. Если какой-нибудь, например звуковой, раздражитель сочетать многократно с надавливанием на глазное яблоко, вызывающим уменьшение частоты сердечных сокращений, то затем один этот раздражитель вызывает урежение сердечной деятельности — условный глазосердечный рефлекс. Условнорефлекторные реакции лежат в основе тех явлений, которые характеризуют так называемое предстартовое состояние спортсменов. Перед соревнованием у них наблюдаются изменения дыхания, обмена веществ, сердечной деятельности такого же характера, как и во время самого соревнования. (У конькобежцев на старте сердечная деятельность учащается на 22—35 сокращений в минуту). Кора мозга обеспечивает приспособительные реакции организма не только к текущим, но и к будущим событиям. По механизму условных рефлексов сигналы, предвещающие наступление этих событий или значительную вероятность их возникновения, могут вызвать перестройку функций сердца и всей сердечно-сосудистой системы в той мере, в какой это необходимо, чтобы обеспечить предстоящую деятельность организма. При чрезвычайно сложных ситуациях (действие «чрезвычайных раздражителей», по И. П. Павлову) возможны нарушения и срывы этих корковых высших регуляторных механизмов (неврозы по И. П. Павлову). При этом наряду с расстройствами поведенческих реакций (и невротическими изменениями психологического статуса человека) могут появиться и значительные нарушения деятельности сердца и сердечно-сосудистой системы. В некоторых случаях эти нарушения могут закрепиться по типу патологических условных рефлексов. При этом нарушения сердечной деятельности могут возникнуть при действии одних лишь условных сигналов. Система дыхания. Основные этапы снабжения организма кислородом. Система кислородного обеспечения организма (СКОО). Биомеханика вдоха и выдоха. Дыхание — это совокупность процессов, обеспечивающих непрерывное поступление кислорода к тканям, использование его в окислительных реакциях, а также удаление из организма образующихся в процессе метаболизма углекислого газа и частично воды. К системе органов дыхания относятся носовая полость, гортань, бронхи и легкие. Оно включает следующие этапы: 1. Внешнее дыхание или вентиляция. Это обмен дыхательных газов между атмосферным воздухом и альвеолами. 2. Диффузия газов в легких. Т.е. их обмен между воздухом альвеол и кровью. 3. Транспорт газов кровью. 4. Диффузия газов в тканях. Обмен газов между кровью капилляров и внутриклеточной жидкостью. 5. Клеточное дыхание. Поглощение кислорода и образование углекислого газа в клетках. Механизм внешнего дыхания. Внешнее дыхание - газообмен между организмом и окружающим его атмосферным воздухом Внешнее дыхание представляет собой ритмический процесс, частота которого у здорового взрослого человека составляет 16-20 циклов в 1 мин. Основная задача внешнего дыхания заключается в поддержании постоянного состава альвеолярного воздуха — 14% кислорода и 5% углекислого газа. Механизм вдоха. Вдох, это активный процесс. При спокойном вдохе сокращаются наружные межреберные и межхрящевые мышцы. Они приподнимают ребра, а грудина отодвигается вперед. Это ведет к увеличению грудной полости. Одновременно сокращаются мышцы диафрагмы. Ее купол опускается, и органы брюшной полости сдвигаются вниз, в стороны и вперед. Во время вдоха при увеличении объема грудной клетки в замкнутой плевральной полости давление сильно падает. Вследствие различия между атмосферным давлением в альвеолах и плевральным давлением легкие растягиваются, в целом увеличиваясь в объеме, следуя за грудной клеткой. Легкие через воздухоносные пути сообщаются с атмосферой. Появившаяся разница между давлением в легких и атмосферным давлением приводит к тому, что воздух начинает поступать через воздухоносные пути (трахея, бронхи) в альвеолы, заполняя их, при этом давление выравнивается. В естественных физиологических условиях воздух в легкие поступает пассивно, как бы «засасываясь» благодаря разрежению в легких, а не нагнетается, как могло бы быть в случае повышения давления во внешней среде. Механизм выдоха. Выдох в основном происходит пассивно: межреберные мышцы расслабляются, купол диафрагмы поднимается. В результате объем грудной клетки уменьшается и давление в плевральной полости возрастает Это давление передается на легочную ткань, поэтому одновременно повышается давление воздуха в альвеолах. Теперь уже давление воздуха в легких становится больше, чем в атмосфере, и воздух благодаря этому начинает выходить из легких по воздухоносным путям наружу. Давление в плевральной полости, его происхождение, изменение при дыхании и роль в механизме внешнего дыхания. Опыт Дондерса. Пневмоторакс. Механизм внешнего дыхания. Внешнее дыхание - газообмен между организмом и окружающим его атмосферным воздухом .Внешнее дыхание представляет собой ритмический процесс, частота которого у здорового взрослого человека составляет 16-20 циклов в 1 мин. Основная задача внешнего дыхания заключается в поддержании постоянного состава альвеолярного воздуха — 14% кислорода и 5% углекислого газа. Несмотря на то, что легкие не сращены с грудной стенкой, они повторяют ее движения. Это объясняется тем, что между ними имеется замкнутая плевральная щель. Изнутри стенка грудной полости покрыта париетальным листком плевры, а легкие ее висцеральным листком. В межплевральной щели находится небольшое количество серозной жидкости. При вдохе объем грудной полости возрастает. А так как плевральная изолирована от атмосферы, то давление в ней понижается. Легкие расширяются, давление в альвеолах становится ниже атмосферного. Воздух через трахею и бронхи поступает в альвеолы. Во время выдоха объем грудной клетки уменьшается. Давление в плевральной щели возрастает, воздух выходит из альвеол. Движения или экскурсии легких объясняются колебаниями отрицательного межплеврального давления.Давление в плевральной полости во время дыхательной паузы ниже атмосферного давления на 3—4 мм рт.ст., т.е. отрицательное. Это вызвано эластической тягой легких к корню, создающей некоторое разрежение в плевральной полости. Это сила, с которой легкие стремятся сжаться к корням, противодействуя атмосферному давлению. Она обусловлена упругостью легочной ткани, которая содержит много эластических волокон. Кроме того, эластическую тягу увеличивает поверхностное натяжение альвеол. Во время вдоха давление в плевральной полости еще больше уменьшается за счет увеличения объема грудной клетки, а значит, отрицательное давление возрастает. Величина отрицательного давления в плевральной полости равна: к концу максимального выдоха - 1-2 мм рт. ст., к концу спокойного выдоха - 2-3 мм рт. ст., к концу спокойного вдоха -5-7 мм рт. ст., к концу максимального вдоха - 15-20 мм рт. ст.Во время выдоха объем грудной клетки уменьшается, одновременно возрастает давление в плевральной полости, причем в зависимости от ин-тенсивности выдоха оно может стать положительным. Пневмоторакс. В случае повреждения грудной клетки в плевральную по-лость входит воздух. При этом легкие сжимаются под давлением вошедшего воздуха вследствие эластичности ткани легких, поверхностного натяжения альвеол. В результате во время дыхательных движений легкие не способны следовать за грудной клеткой, при этом газообмен в них уменьшается или полностью прекращается. При одностороннем пневмотораксе дыхание только одним легким на неповрежденной стороне может обеспечить дыхательную потребность при отсутствии физической нагрузки. Двусторонний пневмоторакс делает невозможным естественное дыхание, в этом случае единственным способом сохранения жизни является искусственное дыхание. Механизмы вдоха и выдоха. Эластическое и неэластическое сопротивление дыханию. Регуляция бронхиального тонуса. Механизм вдоха. Вдох, это активный процесс. При спокойном вдохе сокращаются наружные межреберные и межхрящевые мышцы. Они приподнимают ребра, а грудина отодвигается вперед. Это ведет к увеличению грудной полости. Одновременно сокращаются мышцы диафрагмы. Ее купол опускается, и органы брюшной полости сдвигаются вниз, в стороны и вперед Во время вдоха при увеличении объема грудной клетки в замкнутой плевральной полости давление сильно падает. Вследствие различия между атмосферным давлением в альвеолах и плевральным давлением легкие растягиваются, в целом увеличиваясь в объеме, следуя за грудной клеткой. Легкие через воздухоносные пути сообщаются с атмосферой. Появившаяся разница между давлением в легких и атмосферным давлением приводит к тому, что воздух начинает поступать через воздухоносные пути (трахея, бронхи) в альвеолы, заполняя их, при этом давление выравнивается. В естественных физиологических условиях воздух в легкие поступает пассивно, как бы «засасываясь» благодаря разрежению в легких, а не нагнетается, как могло бы быть в случае повышения давления во внешней среде. Механизм выдоха. Выдох происходит пассивно: межреберные мышцы расслабляются, купол диафрагмы поднимается. В результате объем грудной клетки уменьшается и давление в плевральной полости возрастает.Это давление передается на легочную ткань, поэтому одновременно повышается давление воздуха в альвеолах. Теперь уже давление воздуха в легких становится больше, чем в атмосфере, и воздух благодаря этому начинает выходить из легких по воздухоносным путям наружу. При физической нагрузке, патологических состояниях сопровождающихся одышкой возникает форсированное дыхание. В акт вдоха и выдоха вовлекаются вспомогательные мышцы( грудино-ключично-сосцевидные, лестничные, грудные и трапециевидные мышцы). При форсированном выдохе сокращаются внутренние межреберные мышцы, которые усиливают опускание ребер т.е. это активный процесс. Эластическое и неэластическое сопpотивления. Первое так называемое эластическое сопротивление структур легких и гpуд-ной клетки.Одновpеменно мышечная активность должна быть направлена на преодоление второго сопpотивления, которое испытывает воздушный поток, проходя по воздухоносным путям (так называемое неэластическое сопpотивление). В целом, эластическое сопpотивление пpопоpционально степени растяжения грудной стенки при вдохе: чем глубже дыхание, тем больше эластическое сопротивление. Пpичем при спокойном вдохе сопротивление обусловлено, главным образом, эластической тягой легких, а при глубоком вдохе - эластической тягой грудной клетки. Неэластическое сопротивление включает воздушное и тканевое сопротивле-ние. Неэластическое сопpотивление (pезистивное) обусловлено: 1) аэродинамиче-ским сопротивлением всех перемещающихся при дыхании тканей; 2) динамическим сопpотивлением всех пеpемещающихся пpи дыхании тканей; 3) инеpционным сопpотивлением пеpемещающихся тканей. Основной фактоp — аэpодинамическое сопpотивление. Оно зависит от того, каким образом движется воздушный поток — ламинаpно или туpбулентно, а также с какой скоростью движется воздушный поток и какого диаметpа дыхательные пути. Т.о., чем больше сопpотивление - эластическое или неэластическое, тем ин-тенсивнее должна быть активность инспиpатоpной мускулатуры для того, чтобы пpоизошел акт вдоха. Просвет бронхов, в большей степени, зависит от тонуса гладкой мускулатуры. Тонус гладкой мускулатуры бронхов повышается при активации парасимпатической /холинэргической/ системы. Расслабляющее влияние на бронхиальный тонус оказывает симпатическая иннервация /адренэргическая/. Определенный баланс между этими влияниями способствует установлению оптимального просвета трахеобронхиального дерева Лёгочные объёмы и ёмкости. Функциональные показатели дыхания. Альвеолярная и лёгочная вентиляция. Роль мёртвого пространства. Легочные обьемы: 1. Дыхательный объем (ДО) - это количество воздуха, котоpое человек вдыхает и выдыхает пpи спокойном дыхании. В сpеднем составляет от 300 до 900 мл. 2. Резеpвный объем вдоха (РОвд) - это количество воздуха, котоpое человек может дополнительно вдохнуть после спокойного вдоха. от 2 000 до 2 500 мл. 3. Резеpвный объем выдоха (РОвыд) - это количество воздуха, котоpое человек может максимально выдохнуть после спокойного выдоха при спокойном дыхании. от 1 300 до 1500 мл. 4. Остаточный объем (ОО) - это количество воздуха, котоpое остается у человека в легких после максимального выдоха (от 1 000 до 1 500 мл). 5. минимальный или коллапсный объем (КО). Пpи вскpытии гpудной клетки в спавшихся легких все pавно остается некотоpое количество воздуха. Поэтому легкие взpослых людей и дышавших после pождения детей не тонут в воде. Данный объем составляет в сpеднем 150 мл. В судебной медицине позволяет опpеделить каким pодился pебенок: живым или меpтвым. Легочные емкости: 1. Общая емкость легких (ОЕЛ) - объем воздуха. находящегося в легких после максимального вдоха. ОЕЛ=ДО+Ровд+ +РОвыд+ОО+КО. Составляет от 5 000 до 6 000 мл. 2. Жизненная емкость легких (ЖЕЛ) - это объем воздуха максимально вы-дохнутого из легких после максимального вдоха: ЖЕЛ=ДО+Ровд +РОвыд. У мужчин от 4 000 до 5 500 мл, у женщин - от 3 000 до 4 500 мл. 3. Максимальная емкость вдоха - это объем воздуха, котоpый можно максимально выдохнуть после спокойного выдоха. Евд=ДО+РОвд. 4. Максимальная емкость выдоха - это объем воздуха, котоpый можно максимально выдохнуть после спокойного вдоха. Евыд=ДО+РОвыд. 5. Функциональная остаточная емкость легких -объем воздуха,находящийся в легких в конце спокойного выдоха (пpи pасслабленной дыхательной мускулатуpе). ФОЕ=РОвыд+ОО+КО. 2 500 мл. Функциональные показатели дыхания: 1. Глубина дыхания (ГД =ДО) - составляет от 300 до 900 мл.) 2. Частота дыхания - от 12 до 16 pаз в минуту (эйпноэ). Учащение дыхания называют тахипноэ. Уpежение - бpадипноэ. 3. Минутный объем дыхания (МОД) - количество воздуха, пpоходящее чеpез легкие в течение минуты. У взрослых пpоходит около 5000 мл - 6 000 мл. Полученный показатель сpавнивают с должными величинами. ДМОД (муж)= 3,2 х повеpхность тела (м2). ДМОД (жен)= 3,7 х повеpхность тела (м2). 4. Максимальная вентиляция легких (МВЛ) - количество воздуха, котоpое может пpойти чеpез легкие пpи максимально частом и глубоком дыхании в течении минуты. МВЛ=МЧД х ЖЕЛ. В ноpме от 80 до 200 л/мин.ь ДМВЛ=35х ЖЕЛ (найденную по номогpамме pоста, массы тела, возpаста и пола). 5. Резеpв дыхания (РД) - отpажает функциональные возможности дыхательной системы здоpового человека пpи значительной физической нагpузке. Рассчитывается по фоpмуле: РД=МВЛ-МОД. В ноpме pезеpв дыхания пpевышает МОД не менее, чем в 15-20 pаз 6. По спирограмме определяют такой показатель, как фоpсиpованную ЖЕЛ. Регистрируют глубокий вдох и максимально быстрый выдох. Вычисляют объем форсированного выдоха (ОФВ) за 1с. Далее находят отношение данного объема к ЖЕЛ (так называемый индекс Тифно) и данный показатель выражают в л/сек или в процентах от ЖЕЛ. 7. Максимальную скорость движения воздуха определяют при помощи пневмотахометра. При вдохе скорость движения воздуха составляет 3,2 м/с, при выдохе уменьшается до 2,8 м/с. 8. Альвеолярная вентиляция легких (АВЛ) - это количество воздуха, которое попадает в альвеолы за одну минуту при спокойном дыхании, т.е. это часть минутного объема дыхания, достигающая альвеол. АВЛ=(ДО — ОМП) х ЧД. Различают анатомическое, функциональное и альвеолярное мертвое пространство. Анатомическим называется объем воздухоносных путей - носоглотки, гортани, трахеи, бронхов, бронхиол. В нем не происходит газообмена. К альвеолярному мертвому пространству относят объем альвеол, которые не вентилируются или в их капиллярах нет кровотока. Следовательно, они также не участвуют в газообмене. Функциональным мертвым пространством является сумма анатомического и альвеолярного. У здорового человека объем альвеолярного мертвого пространства очень небольшой. Поэтому величина анатомического и функционального пространств практически одинакова и составляет около 30% дыхательного объема. В среднем 140 мл. При нарушении вентиляции и кровоснабжения легких объем функционального мертвого пространства значительно больше анатомического. Вместе с тем, анатомическое мертвое пространство играет важную роль в процессах дыхания. Воздух в нем согревается, увлажняется, очищается от пыли и микроорганизмов. Здесь формируются дыхательные защитные рефлексы - кашель, чихание. В нем происходит восприятие запахов, и образуются звуки. Газообмен в лёгких. Состав вдыхаемого, выдыхаемого и альвеолярного воздуха. Парциальное давление и напряжение газов. Биохимизм диффузии газов в лёгких. Обмен газов в легких.Перенос газов в системе дыхания происходит двумя способами: диффузионный и конвективный перенос газов. В трахее, бронхах и бронхиолах перенос газов происходит путем конвекции. В респираторных бронхиолоах и альвеолярных ходах, где воздух движется очень медленно, к процессу конвекции присоединяется диффузионный обмен, обусловленный градиентом парциальных давлений дыхательных газов: молекулы кислорода перемещаются в альвеолы, где парциальное давление кислорода ниже, чем во вдыхаемом воздухе, а молекулы углекислого газа - в обратном направлении.Функциональной единицей легких является ацинус. Каждый ацинус вентилируется теминальной бронхиолой, которая заканчивается альвеолярными мешками, в стенках этих мешков находятся альвеолы. Диаметр альвеолы от 0,18 до 0,26 мм. В легких их около 300 млн.За 1-2 с газовый состав альвеол обновляется за счет поступления атмосферного воздуха. В состав атмосферного воздуха входит 20,93% кислорода, 0,03% углекислого газа. 79,03% азота, 14% кислорода, 5,5% углекислого газа и около 80% азота. При выдохе альвеолярный воздух смешивается с воздухом мертвого пространства, состав которого соответствует атмосферному. Поэтому в выдыхаемом воздухе 16% кислорода, 4,5% углекислого газа и 79,4% азота. Дыхательные газы обмениваются в легких через альвеолокапиллярную мембрану. Это область контакта альвеолярного эпителия и эндотелия капилляров. Переход газов через мембрану происходит по законам диффузии. Скорость диффузии прямо пропорциональна разнице парциального давления газов. Согласно закону Дальтона, парциальное давление каждого газа в их смеси, прямо пропорционально его содержанию в ней. Поэтому парциальное давление кислорода в альвеолярном воздухе 100 мм.рт.ст. а углекислого газа 40 мм.рт.ст. Напряжение кислорода в венозной крови капилляров легких 40 мм.рт.ст., а углекислого газа - 46 мм.рт.ст. Поэтому градиент давления по кислороду направлен из альвеол в капилляры, а для углекислого газа в обратную сторону. Кроме того, скорость диффузии зависит от площади газообмена, толщины мембраны и коэффициента растворимости газа в тканях. Общая поверхность альвеол составляет 50-80 м2, а толщина альвеоло -капиллярной мембраны всего 1 мкм. Это обеспечивает высокую эффективность газообмена. Показателем проницаемости мембраны является коэффициент диффузии Крога. Для углекислого газа он в 25 раз больше, чем для кислорода. Где он диффундирует в 25раз быстрее. Высокая скорость диффузии компенсирует более низкий градиент давлений углекислого газа. Диффузионная способность легких для газа (л) характеризуется его количеством, которое обменивается за 1 минуту на 1 мм.рт.ст. градиента давления. Для кислорода в норме она равна 30 мл* мин-1*мм:рт.ст. Чтобы произошел газообмен в легких необходима разность парциальных давлений обмениваемых газов. Парциальное давление - это давление газа в смеси газов. Давление газов в жидкости называют парциальным напряжением газов. Парциальное напряжение газа в крови или в тканях - это сила, с которой молекулы растворенного газа стремятся выйти в газовую фазу. Выражается это давление в мм рт. ст. В артериальной крови парциальное напряжение кислорода достигает почти 100 мм рт. ст., в венозной крови около 40 мм рт.ст., а в клетках 0 - 10-15 мм рт. ст. Напряжение углекислого газа в артериальной крови - около 40 мм рт. ст., в венозной крови 46 мм рт. ст., а в тканях - до 60 мм рт. ст. Таким образом, за счет разности давлений газов между альвеолярным воздухом и венозной кровью за 1-2 с газовый состав выравнивается и венозная кровь превращается в артериальную. Связывание и транспорт СО2. Значение карбоангидразы. Биохимизм газообмена в тканях. Перенос углекислого газа. Двуокись углерода, образующаяся в тканях, переносится с кровью к легким и выделяется с выдыхаемым воздухом в атмосферу. В отличие от транспорта кислорода она транспортируется кровью тремя способами.Во-первых, так же как и кислород, двуокись углерода переносится в физически растворенном состоянии. Содержание физически растворенной двуокиси углерода в артериальной крови составляет 0,026 мл в 1 мл крови, что в 9 раз превышает количество физически растворенного кислорода.Во-вторых, двуокись углерода транспортируется в виде химического соединения с гемоглобином — карбогемоглобина.В третьих — в виде гидрокарбоната НСОз, образующегося в результате диссоциации угольной кислоты. Механизм переноса двуокиси углерода. Наибольшее парциальное давление двуокиси углерода в клетках тканей и в тканевой жидкости — 60 мм рт.ст.; в притекающей артериальной крови оно составляет 40 мм рт.ст. Благодаря этому градиенту двуокись углерода движется из тканей в капилляры. В результате ее парциальное давление возрастает, достигая в венозной крови 46—48 мм рт.ст. Под влиянием высокого парциального давления часть двуокиси углерода физически растворяется в плазме крови. Роль карбоангидразы. Большая же часть двуокиси углерода претерпевает химические превращения. Благодаря ферменту карбоангидразе она соединяется с водой, образуя угольную кислоту Н2СО3. Особенно активно эта реакция идет в эритроцитах, мембрана которых хорошо проницаема для двуокиси углерода.Угольная кислота (Н2СО3) диссоциирует на ионы водорода Н+ и гидрокарбоната (НСОз), которые проникают через мембрану в плазму.Наряду с этим двуокись углерода соединяется с белковым компонентом гемоглобина, образуя карбоаминовую связь.В целом 1 л венозной крови фиксирует около 2 ммоль двуокиси углерода. Из этого количества 10 % находится в виде карбоаминовой связи с гемоглобином, 35 % составляют ионы гидрокарбоната в эритроцитах, и оставшиеся 55 % представлены угольной кислотой в плазме. Связывание и транспорт газов кровью. Кривая диссоциации оксигемоглобина, её сдвиги. Артерио-венозная разность и коэффициент утилизации кислорода. Кислород транспортируется кровью двумя способами: в связанном с гемоглобином виде — в форме оксигемоглобина и за счет физического растворения газа в плазме крови.Физическое растворение. Все газы, в том числе и кислород, в соответствии со своим парциальным давлением могут физически растворяться в жидкости. Так, в артериальной крови содержание физически растворимого кислорода составляет 0,003 мл в 1 мл крови. Химическое соединение. Большая часть кислорода переносится кровью в виде химических соединений с гемоглобином. Один моль гемоглобина может связать до четырех молей кислорода и в среднем 1 г гемоглобина способен связать 1,34—1,36 мл кислорода. Исходя из этого, можно определить кислородную емкость крови, характеризующую количество кислорода, содержащееся в 1 л крови. Принимая во внимание, что в норме в 1 л крови присутствует 150 г гемоглобина, можно рассчитать, что в 1 л крови содержится 0,2 л кислорода. Характеристика кривой диссоциации оксигемоглобина. Связывание кислорода с гемоглобином и высвобождение его зависят от парциального давления кислорода. Соотношение количества гемоглобина и оксигемоглобина в крови иллюстрирует кривая диссоциации оксигемоглобина. Чем выше парциальное давление кислорода, тем больше содержание оксигемоглобина; при парциальном давлении 80 мм рт.ст. практически весь гемоглобин насыщается кислородом, за исключением незначительного количества (1—2 %), «занятого» двуокисью углерода. Динамика кривой зависит от нескольких факторов. Кривая может сдвигаться относительно оси абсцисс вправо или влево (эффект Бора) в зависимости от сопутствующего парциального давления двуокиси углерода и величины рН. При этом реальная физиологическая кривая имеет S-образную форму. При увеличении содержания двуокиси углерода и закислении крови кривая диссоциации оксигемоглобина сдвигается вправо и, напротив, при снижении РСо2 и защелачивания крови кривая сдвигается влево. Эффект Бора. При увеличении парциального давления двуокиси углерода в тканях кривая диссоциации оксигемоглобина, сдвигаясь вправо, отражает повышение способности оксигемоглобина отдавать кислород тканям и тем самым высвобождаться для дополнительного связывания двуокиси углерода и переноса ее избытка из тканей в легкие. Напротив, при снижении парциального давления двуокиси углерода и смещении рН крови в основную сторону (алкалоз) сдвиг кривой диссоциации оксигемоглобина влево означает снижение способности оксигемоглобина отдавать кислород тканям и поглощать двуокись углерода для транспорта ее к легким. Сдвиг кривой диссоциации оксигемоглобина иллюстрирует взаимосвязь транспорта кислорода и двуокиси углерода в крови и сродство гемоглобина к этим газам. Нервная регуляция дыхания. Собственные рефлексы с рецепторов лёгких, дыхательных путей и дыхательных мышц. Собственные рефлексы возникают с рецепторов самой системы дыхания. 1. рецепторы растяжения легких. Они участвуют в регуляции параметров дыхательного цикла - глубины вдоха и его длительности и во-вторых,- эти рецепторы служат источником ряда рефлексов защитного характера. Рецепторы растяжения легких локализованы главным образом в гладкомышечном слое стенок трахеобронхиального дерева и чувствительны к трансмуральному давлению, т.е. к разности давлений внутри и снаружи просвета воздухоносных путей. Тем самым эти механорецепторы оказываются источником сигнализации о растяжении легких. Рефлексы с этих рецепторов получили название по автору, изучавших их- Геринга-Брейера.Физиологическое значение рефлексов Геринга-Брейера состоит в ограничении дыхательных экскурсий. Благодаря этому достигается соответствие глубины дыхания сиюминутным условиям функционирования организма. Кроме того, в экстремальных условиях рефлексы Геринга-Брейера препятствуют перерастяжению легких. 1.а) рефлекс Геринга-Брейера: если в легкие во время вдоха быстро ввести воздух, то вдох рефлекторно затормозится и начнется выдох - инспираторно-тормозной рефлекс. Б) рефлекс Геринга-Брейера: если в легкие воздух вводить на выдохе, то выдох удлиняется - экспираторно-облегчающий рефлекс. 2.Если сильно и резко раздувать легкие во время вдоха, то за счет активации инспираторных мышц будет наблюдаьтся парадоксальный судорожный вдох ("вздох"). Данный рефлекс получил название - парадоксальный рефлекс Хеда. Ирритантные рецепторы. Данные рецепторы расположены в эпителиальном и субэпителиальном слоях стенок воздухоносных путей. Их афферентные волокна тоже идут в стволе блуждающего нерва. Эти рецепторы могут реагировать на резкие изменения объема легких, а также участвуют в возникновении защитных рефлексов .Так при раздражении резкими пахучими веществами активация данных рецепторов вызывает апноэ /задержку дыхания/. Может возникнуть рефлексы кашля, чихания. 3.Механизм кашля: резкое возбуждение в центре вдоха вследствии афферентной импульсации приводит к глубокому вдоху и вслед за этим резкое сокращение мышц - экспираторов /главным образом брюшных/ при закрытой голосовой щели создает компрессию воздуха в просвете трахеобронхиального дерева. После достижения давления до определенных величин голосовая щель открывается и присходит резкий выдох. 4.Механизм чихания: данный рефлекс вызывается обычно изолированным раздражением рецепторов слизистой оболички носа и отличается от кашля тем, что голосовая щель с самого начала остается открытой. Юкстаальвеолярные рецепторы /юкстакапиллярные/. Данные рецепторы чувствительны к ряду биологически активных веществ /никотину, гистамину, простагландинам и др./, проникающим либо из воздухоносных путей, либо кровью малого круга. Рецепторы локализованы в интерстиции легких вблизи капилляров альвеол и дают начало немиелизированным С-волокнам, проходящим в составе блуждающего нерва. Стимуляция данных рецепторов приводит к частому и поверхнгстному дыханию /тахипноэ/. Сопряженные рефлексы 1.Проприоцептивные рефлексы. Мышечная деятельность служит наиболее сильным естественным стимулом дыхания. Как только включается мышечная нагрузка, легочная вентиляция возрастает за счет углубления и учащения дыхания.При выполнении мышечной работы минутный объем дыхания может повы-шаться до 80-100, а у спортсменов до 150 л/мин. 2.Экстерорецептивные рефлексы. Это рефлексы, возникающие с рецепторов кожи. К рецепторам кожи относятся: нооцепторы /болевые/, температурные, так-тильные. Активация всех этих рецепторов вызывает изменение деятельности дыхательных нейронов.Например, сильные холодовые или тепловые воздействия на кожу могут приводить к возбуждению или торможению нейронов дыхательного центра. 3.Интероцептивные. Интероцептивные сопряженные рефлексы возникают с рецепторов внутренних органов. Так, например, в ответ на импульсацию от сосудистых барорецепторов. Моисеев в эксперименте показал, что понижение кровяного давления в аортально-каротидной зоне стимулирует дыхательную деятельность, а повышение кровяного давления ведет к временной остановке и урежению дыхания. Особенности дыхания в разных условиях: при мышечной работе, при пониженном и повышенном атмосферном давлении. Механизмы адаптации при гипоксии. при физической работе. Во время выполнения физической работы мышцам необходимо большое количество кислорода. Потребление 02 и продукция СО2 возрастают при физической нагрузке в среднем в 15 - 20 раз. Обеспечение организма кислородом достигается сочетанным усилением функции дыхания и кровообращения. Уже в начале мышечной работы вентиляция легких быстро увеличивается. В возникновении гиперпноэ в начале физической работы периферические и центральные хеморецепторы как важнейшие чувствительные структуры дыхательного центра еще не участвуют. Уровень вентиляции в этот период регулируется сигналами, поступающими к дыхательному центру главным образом из гипоталамуса, лимбической системы и двигательной зоны коры большого мозга, а также раздражением проприорецепторов работающих мышц. По мере продолжения работы к нейрогенным стимулам присоединяются гуморальные воздействия, вызывающие дополнительный прирост вентиляции. При тяжелой физической работе на уровень вентиляции оказывают влияние также повышение температуры, артериальная двигательная гипоксия и другие лимитирующие факторы. при пониженном атмосферном давлении. При подъеме на высоту человек оказывается в условиях пониженного атмосферного давления. Следствием понижения атмосферного давления является гипоксия, которая развивается в результате низкого парциального давления кислорода во вдыхаемом воздухе.При подъеме на высоту 1,5-2 км над уровнем моря не происходит значительного изменения снабжения организма кислородом и изменения дыхания. На высоте 2,5-5 км наступает увеличение вентиляции легких, вызванное стимуляцией каротидных хеморецепторов. Одновременно происходит повышение артериального давления и увеличение частоты сердечных сокращений. Все эти реакции направлены на усиление снабжения тканей кислородом.Увеличение вентиляции легких на высоте может привести к снижению парциального давления углекислого газа в альвеолярном воздухе - гипокапнии, при которой снижается стимуляция хеморецепторов, особенно центральных, это ограничивает увеличение вентиляции легких. Природа горной болезни. На высоте 4-5 км развивается высотная (горная) болезнь, которая характеризуется: слабостью, цианозом, снижением частоты сердечных сокращений, артериального давления, головными болями, снижением глубины дыхания. На высоте свыше 7 км могут наступить опасные для жизни нарушения дыхания, кровообращения и потеря сознания. Особенно большую опасность представляет быстрое развитие гипоксии, при котором потеря сознания может наступить внезапно. при повышенном атмосферном давлении Под повышенным давлением воздуха человеку приходится находиться во время водолазных и кессонных работ. При погружении под воду через каждые 10 м давление воды на поверхность тела увеличивается на 1 атм, следовательно, на глубине 90 м на человека действует давление около 10 атм.При погружении под воду в водолазных костюмах человек может дышать только воздухом под соответствующим погружению повышенным давлением. В этих условиях увеличивается количество газов, растворенных в крови, кислорода и особенно азота. Поэтому при погружении на большие глубины для дыхания применяются гелиево-кислородные смеси. Гелий почти нерастворим в крови и при дыхании им снижается сопротивление дыханию. Кислород добавляют к гелию в такой концентрации, чтобы его парциальное давление на глубине (т. е. при повышенном давлении) было близким к тому, которое имеется в обычных условиях. Природа кессонной болезни. После работ на больших глубинах специального внимания требует переход человека от высокого давления к нормальному. При быстрой декомпрессии, например, при быстром подъеме водолаза, физически растворенные в крови и тканях газы значительно больше обычного, не успевают выделиться из организма и образуют пузырьки. Кислород и углекислый газ представляют меньшую опасность, т. к. они быстро связываются кровью и тканями. Особую опасность представляет образование пузырьков азота, которые разносятся кровью и закупоривают мелкие сосуды (газовая эмболия), что сопряжено с большой опасностью для жизни. Состояние, возникающее при быстрой декомпрессии, называется кессонной болезнью, она характеризуется болями в мышцах, головокружением, рвотой, одышкой, потерей сознания, а в тяжелых случаях могут возникать параличи. При появлении признаков кессонной болезни необходимо немедленно вновь подвергнуть пострадавшего действию высокого давления (такого, с которого он начинал подъем), чтобы вызвать растворение пузырьков азота, а затем декомпрессию производить постепенно. Дыхательный центр (Н.А.Миславский). Современное представление о его структуре и локализации Дыхательный центр. Во время вдоха, когда воздух начинает поступать в легкие, они растягиваются и рецепторы, чувствительные к растяжению возбуждаются. Импульсы от них по волокнам блуждающего нерва поступают в структуры продолговатого мозга к группе нейронов, составляющих дыхательный центр (ДЦ). Как показали исследовании в продолговатом мозге в его дорсальных и вентральных ядрах локализованы центр вдоха и выдоха. От нейронов центра вдоха возбуждение поступает к мотонейронам спинного мозга, аксоны которых составляют диафрагмальный, наружные межреберные и межхрящевые нервы, иннервирующие дыхательные мышцы. Сокращение этих мышц еще больше увеличивает объем грудной клетки, воздух продолжает поступать в альвеолы, растягивая их. Поток импульсов в дыхательный центр от рецепторов легких увеличивается. Таким образом, вдох стимулируется вдохом. Дыхательном центром называют совокупность взаимосвязанных нейронов ЦНС, обеспечивающих координированную ритмическую деятельность дыхательных мышц и постоянное приспособление внешнего дыхания к изменяющимся условиям внутри организма и в окружающей среде. Условно дыхательный центр можно подразделить на 3 отдела: 1.Низший - включает в себя мотонейроны спинного мозга, иннервирующие дыхательные мышцы. 2.Рабочий- объединяет нейроны продолговатого отдела и моста. 3.Высший - все вышележащие нейроны, влияющие на процесс дыхания. Сопряжённые рефлексы системы дыхания. Механизм периодической деятельности дыхательного центра. Главной особенностью дыхательного центра является периодичность, при которой возбуждение нейронов изменяется их торможением. В основе периодичности лежит функция бульбарного отдела. При этом решающая роль принадлежит нейронам дорсального ядра. Считают, что они являются своеобразным «водителем ритма». К бульбарного центра поступает возбуждение от многих образований ЦНС, в том числе от пневмотаксичного центра. Так, если перерезать ствол мозга, отделив варолиев городов от продолговатого мозга, то у животных снижается частота дыхательных движений. При этом обе составляющие - и вдох и выдох - становятся более продолжительными. Пневмотаксичний и бульбарный центры имеют двусторонние связи, с помощью которых пневмотаксичний центр ускоряет возникновение следующих инспираций и експираций. На активность нейронов дыхательного центра влияют другие отделы ЦНС, такие, как ретикулярная формация, гипоталамус, кора больших полушарий. Например, характер дыхания меняется при эмоциях. Скелетные мышцы, которые участвуют в дыхании, часто выполняют и другие движения. Да и собственное дыхание, его глубину и частоту человек может менять сознательно, что свидетельствует о влиянии на дыхательный центр коры больших полушарий. Благодаря этим связям дыхания сочетается с выполнением рабочих движений, речевой функцией человека. Таким образом инспираторных нейронов, как «водители ритма», существенно отличаются от настоящих пейсмекерных клеток. При возникновении ритмики основных дыхательных нейронов дорсального ядра необходимо учитывать два условия: а) «последовательность поступления» каждой группы нейронов именно этого отдела б) обязательное импульсацию от других отделов ЦНС и импульсацию от различных рецепторов. Поэтому при полном отделении бульбарного отдела дыхательного центра в нем можно зарегистрировать только вспышки активности с частотой, значительно меньше, чем в обычных условиях целого организма. Дыхание является вегетативной функции, а выполняется скелетными мышцами. Поэтому механизмы его регуляции имеют общие черты с механизмами регулирования деятельности как вегетативных органов, так и скелетных мышц. Потребность в постоянном дыхании обеспечивается автоматически за счет активности дыхательного центра. Однако вследствие того, что дыхание осуществляют скелетные мышцы, возможны и произвольные изменения характера дыхания, обусловленные влиянием коры больших полушарий на дыхательный центр. Если во внутренних органах (сердце, кишки) автоматизм обусловлен лишь свойствами водителей ритма, то в дыхательном центре периодическая деятельность управляется дещЬ сложными механизмами. Периодичность обусловлена: 1) согласованной активностью различных отделов дыхательного центра, 2) поступлением сюда импульсов от рецепторов, 3) поступлением сигналов от других отделов ЦНС, в том числе и от коры головного мозга. Кроме того, при анализе механизма периодичности дыхания нужно учесть, что спокойное и форсированное дыхание существенно отличаются по количеству мышц, участвующих в этом акте. Во многом эта разница определяется уровнем привлечения вентрального отдела бульбарного дыхательного центра, в котором есть как инспираторная, так и экспираторная нейроны. При спокойном дыхании эти нейроны относительно малоактивны, а при глубоком дыхании их роль резко возрастает. Гуморальная регуляция дыхания. Зависимость деятельности дыхательного центра от газового состава крови. Механизм первого вдоха новорожденного. Гуморальная регуляция дыхания. Углекислый газ, водородные ионы и умеренная гипоксия вызывают усиление дыхания за счет усиления деятельности дыхательного центра, оказывая влияние на специальные хеморецепторы. Хеморецепторы, чувствительные к увеличению напряжения углекислого газа и к снижению напряжения кислорода находятся в каротидных синусах и в дуге аорты. Артериальные хеморецепторы расположены в специальных маленьких тельцах, которые богато снабжены артериальной кровью. Большее значение для регуляции дыхания имеют каротидные хеморецепторы. При нормальном содержании кислорода в артериальной крови в афферентных нервных волокнах, отходящих от каротидных телец, регистрируются импульсы. При снижении напряжения кислорода частота импульсов возрастает особенно значительно. Кроме того, афферентные влияния с каротидных телец усиливаются при повышении в артериальной крови напряжения углекислого газа и концентрации водородных ионов. Хеморецепторы, особенно каротидных телец, информируют дыхательный центр о напряжении кислорода и углекислого газа в крови, которая направляется к мозгу. В продолговатом мозге обнаружены центральные хеморецепторы, которые постоянно стимулируются водородными ионами, находящимися в спиномозговой жидкости. Они существенно изменяют вентиляцию легких Например, снижение рН спиномозговой жидкости на 0,01 сопровождается увеличением легочной вентиляции на 4 л/мин. Импульсы, поступающие от центральных и периферических хеморецепторов, являются необходимым условием периодической активности нейронов дыхательного центра и соответствия вентиляции легких газовому составу крови. Последний является жесткой константой внутренней среды организма и поддерживается по принципу саморегуляции путем формирования функциональной системы дыхания. Системообразующим фактором этой системы является газовая константа крови. Любые ее изменения являются стимулами для возбуждения рецепторов, расположенных в альвеолах легких, в сосудах, во внутренних органах и т. д. Информация от рецепторов поступает в ЦНС, где осуществляется ее анализ и синтез, на основе которых формируются аппараты реакций. Их совокупная деятельность приводит к восстановлению газовой константы крови. В процесс восстановления этой константы включаются не только органы дыхания (особенно ответственные за изменение глубины и частоты дыхания), но и органы кровообращения, выделения и другие, представляющие в совокупности внутреннее звено саморегуляции. При необходимости включается и внешнее звено в виде определенных поведенческих реакций, направленных на достижение общего полезного результата - восстановление газовой константы крови. До рождения лёгкие находятся в спавшемся состоянии. Ребёнок после рождения делает несколько сильных дыхательных движений, лёгкие расправляются, а сурфактант удерживает их от спадения (коллапса). После перевязки пуповины в его крови накапливается углекислый газ и снижается содержание кислорода. Возбуждаются хеморецепторы сосудистых рефлексогенных зон, активируются инспираторные нейроны, сокращаются инспираторные мышцы, происходит вдох. Начинается ритмическое дыхание. Недостаток или дефекты сурфактанта вызывают тяжёлое заболевание (синдром дыхательного дистресса). Поверхностное натяжение в лёгких у таких детей высокое, поэтому многие альвеолы находятся в спавшемся состоянии. Пищеварение в полости рта. Слюнные железы и их регуляция. Глотание. Пищеварение в ротовой полости. Поступившая в рот пища раздражает рецепторы ротовой полости. Тактильные, температурные и болевые рецепторы расположены по всей слизистой оболочке полости рта, вкусовые — преимущественно во вкусовых почках сосочков языка. Различные зоны языка имеют разный набор рецепторов, которые «различают» сладкие, кислые, горькие и соленые вещества. Импульсы от вкусовых рецепторов по афферентным волокнам тройничного, лицевого и языкоглоточного нервов поступают в соответствующие центры продолговатого и другие отделы мозга. Из этих центров эфферентные влияния возбуждают секрецию слюнных, желудочных и поджелудочной желез, желчевыделение, изменяют моторную деятельность пищевода, желудка, проксимального отдела тонкой кишки, влияют на кровоснабжение органов пищеварения, определяют начальный рефлекторный компонент специфического динамического действия пищи. Пищеварение в полости рта включает следующие этапы: 1)Дегустация пищи 2) Жевание 3) первичная хим. обработка Процесс механической обработки пищи зубами посредством движения нижней челюсти относительно верхней называется жеванием. Жевательные движения осуществляются сокращениями жевательных и мимических мышц, мышц языка. При жевании резцы могут развивать давление на пищу 11—25 кГс/см, коренные зубы — 29—90 кГс/см. Акт жевания осуществляется рефлекторно, имеет цепной характер. В ротовой полости пища в процессе жевания измельчается, смачивается слюной, перемешивается с ней, растворяется (без чего невозможна оценка вкусовых качеств пищи и ее гидролиз). В результате формируется относительно гомогенный ослизненный пищевой комок для глотания. Механизм жевания. Импульсы от рецепторов полости рта по волокнам тройничного нерва передаются в сенсорные ядра продолговатого мозга, ядра зрительного бугра, оттуда — в кору большого мозга. От ствола мозга и зрительного бугра коллатерали отходят к ретикулярной формации. В реализации жевания принимают участие двигательные ядра продолговатого мозга, красное ядро, черное вещество, подкорковые ядра, мозжечок и кора большого мозга. Совокупность управляющих жеванием нейронов различных отделов мозга называется центром жевания. Импульсы от него по двигательным волокнам тройничного нерва поступают к жевательным мышцам, которые осуществляют движения нижней челюсти. Мышцы языка, щек и губ перемещают пищевой комок в полости рта, удерживают пищу между жевательными поверхностями зубов. В координации жевания существенное значение имеют импульсы от рецепторов жевательных мышц и зубов. Химическая обработка пищи в ротовой полости.Слюнные железы. Продукция слюны. Слюна продуцируется тремя парами слюнных желез и множеством мелких железок языка, слизистой оболочки неба и щек. Из желез по выводным протокам слюна поступает в полость рта. Околоушные железы и малые железы боковых поверхностей языка, имеющие большое количество серозных клеток, секретируют жидкую слюну с высокой концентрацией хлоридов натрия и калия и высокой активностью амилазы. Секрет подчелюстной железы (смешанный) богат органическими веществами, в том числе муцином, имеет амилазу, но в меньшей концентрации, чем слюна околоушной железы. Слюна подъязычной железы (смешанной) еще более богата муцином, имеет выраженную основную реакцию, высокую фосфатазную активность. Слизистые и мелкие смешанные железы расположены в корне языка и неба; их секрет особенно вязок из-за высокой концентрации муцина. Регуляция слюноотделения. Слюноотделение осуществляется по рефлекторному механизму. Различают условно-рефлекторное и безусловно-рефлекторное слюноотделение. Условно-рефлекторное слюноотделение вызывают вид, запах пищи, звуковые раздражители, связанные с приготовлением пищи, а также разговор и воспоминание о пище. При этом возбуждаются зрительные, слуховые, обонятельные рецепторы. Нервные импульсы от них поступают в корковый отдел соответствующего анализатора, а затем в корковое представительство центра слюноотделения. От него возбуждение вдет к бульбарному отделу центра слюноотделения, эфферентные команды которого поступают к слюнным железам. Безусловно-рефлекторное слюноотделение происходит при поступлении пищи в ротовую полость. Пища раздражает рецепторы слизистой оболочки. Афферентный путь секреторного и двигательного компонентов акта жевания является общим. Нервные импульсы по афферентным путям поступают в центр слюноотделения, который находится в ретикулярной формации продолговатого мозга и состоит из верхнего и нижнего слюноотделительных ядер. Большое значение в регуляции слюноотделения имеют гуморальные факторы, к которым относятся гормоны гипофиза, надпочечников, щитовидной и поджелудочной желез, а также продукты метаболизма. Глотание. Глотание сложнорефлекторный акт, который начинается произвольно. Сформированный пищевой комок перемещается на спинку языка, языком прижимается к твердому небу и передвигается на корень языка. Здесь он раздражает механорецепторы корня языка и небных дужек. От них по афферентным нервам импульсы идут к центру продолговатого мозга. От него, по эфферентным волокнам подъязычного, тройничного, языкоглоточного и блуждающего нерва, они поступают к мышцам полости рта, глотки, гортани, пищевода. Мягкое небо рефлекторно поднимается и закрывает вход в носоглотку. Одновременно гортань поднимается, а надгортанник опускается, закрывая вход в гортань. Пищевой комок проталкивается в расширившуюся глотку. Этим заканчивается ротоглоточная фаза глотання. 3атем подтягивается пищевод и его верхний сфинктер расслабляется. Начинается пищеводная фаза. По пищеводу пищевой комок продвигается за счет его перистальтики. Циркулярные мышцы пищевода сокращаются выше пищевого комка и расслабляются ниже него. Волна сокращения-расслабления распространяется к желудку. Этот процесс называется первичной перистальтикой. При подходе пищевого комка к желудку расслабляется нижний пищеводный иди кардиальный сфинктер, пропуская комок в желудок. Вне глотания он закрыт и служит для предотвращения заброса в пищевод желудочного содержимого. Если пищевой комок застревает в пищеводе, то от места его расположения начинается вторичная перистальтика, по механизмам идентичная первичной. Твердая пища продвигается по пищеводу 8-9 сек. Жидкая стекает пассивно, без перистальтики, за 1-2 сек. Расстройства глотания называют дисфагиями. Они возникают при нарушениях в центре глотания (водобоязнь), иннервации пищевода или спазмах мышц. Снижение тонуса кардиального сфинктера приводит к рефлексу, т.е. забросу желудочного содержимого в пищевод (изжога). Если его тонус наоборот повышен пища, скапливается в пищеводе. Это явление называется ахалазией. В клинике глотание исследуется рентгеноскопическим путем проглатывания взвеси сульфата бария (ренттеноконтрастное вещество). Состав слюны. Секрет слюнных желез содержит около 99% воды и 1 % сухого остатка, в который входят анионы хлоридов, фосфатов, сульфатов, бикарбонатов, иодитов, бромидов, фторидов. В слюне содержатся катионы натрия, калия, кальция, магния, а также микроэлементы (железо, медь, никель и др.). Органические вещества представлены в основном белками. В слюне имеются самые различные по происхождению белки в том числе и белковое слизистое вещество муцин. В слюне содержатся азотсодержащие компоненты: мочевина, аммиак, креатинин и др. Функции слюны. 1. Пищеварительная функция 2. Защитная функция слюны выражается в следующем: 3. Трофическая функция 4. Выделительная функция Иннервация желудочно-кишечного тракта и фазы секреции пищеварительных желёз (И.П.Павлов). Пусковые и корригирующие влияния на желудочно-кишечный тракт (ЖКТ), их эффекты. Эфферентные пути пищевого центра образованы симпатическими и парасимпатическими нервными волокнами . Периферические рефлекторные дуги обеспечивают пусковые ,корригирующие и адаптационно-трофические влияния, которые важны в организации согласованных и сложных сокращений желудка, кишечника и сфинктеров. Парасимпатическая иннервация ЖКТ осуществляется через блуждающие и тазовые внутренностные нервы. При возбуждении парасимпатических нервов увеличивается тонус гладкой мускулатуры ЖКТ, усиливается перистальтика, расслабляются гладкомышечные сфинктеры. По мере удаления от полости рта в каудальном направлении нервные влияния уменьшаются. Это называется аборальной децентрализацией. С уменьшением значения рефлекторных механизмов регуляции повышается значение гуморальных механизмов, особенно гормонов, образующихся в специальных эндокринных клетках. Они расположены в слизистой оболочке желудка, двенадцатиперстной и тонкой кишки, в поджелудочной железе. Значение гуморальной регуляции — усиливать и удлинять нервные воздействия. По мере удаления от полости рта в каудальном направлении нервные влияния уменьшаются. Это называется аборальной децентрализацией. С уменьшением значения рефлекторных механизмов регуляции повышается значение гуморальных механизмов, особенно гормонов, образующихся в специальных эндокринных клетках. Они расположены в слизистой оболочке желудка, двенадцатиперстной и тонкой кишки, в поджелудочной железе. Значение гуморальной регуляции — усиливать и удлинять нервные воздействия. Теория фазности секреции пищеварительных желез И. П. Павлов в секреции желез выделял следующие две фазы: I - сложнорефлекторная (мозговая) фаза секреция запускается условно-рефлекторно, подкрепляясь затем безусловными рефлексами (безусловные рефлексы действуют до тех пор, пока пища находится в ЖКТ); II — нейрогуморальная — осуществляется безусловными сокоотделительиыми рефлексами и гуморальными веществами. Каждая фаза имеет не только стимулирующий, по и тормозной компонент. Если желудочная секреция в первую (мозговую) фазу заторможена, то в желудочную и кишечную фазы обычно удлиняется, увеличивается время пребывания химуса в желудке и замедляется его транзит по топкой кишке. Гуморальная регуляция деятельности желудочно-кишечного тракта (ЖКТ). Собственные гормоны ЖКТ, их роль. Принципы регуляции ЖКТ, роль нервных и гуморальных механизмов. Фазы секреции пищеварительных желёз. Регуляция пищеварения. Деятельность пищевар. сист. регулируется нервными и гуморальными механизмами. Нерв. регуляция пищевар. осуществляется пищевым центром с помощ условных и безусловных рефлексов, эфферентные пути * образованы симпатическими и парасимпатическими нерв. волокнами. По мере удаления от начала жкт участие истинных рефлексов в регуляции пищевар. уменьш., повыш. значение гуморальных механизмов, особенно гормонов, образующихся в спец. эндокринных кл. слизистой оболочки желудка, 12перстной и тощей кишки, в поджелудочной железе. Эти гормоны - гастроинтестинальныеМестные механич. и хим. раздражения влияют как путем периферических рефлексов, так и ч/з гормоны пищевар. трактаОсобенно велика роль в гуморальной регуляции деятельности орг. пищевар. гастроинтестинальных гормонов, * оказывают множественные воздействия на жкт. Эти гормоны влияют на секрецию и всасывание воды, электролитов и ферментов, моторную активность жкт, на пролиферативную активность слизистой оболочки и пищевар. желез, на функциональную активность эндокринных кл. Секреторные и мышечные кл. жкт изменяют уровень функциональной активности в зависимости от рефлекторных интеро- и экстерорецепторных и гуморальных влияний, а также в зависимости от уровня кровоснабжения. Механизмы регуляции взаимосвязаны и контролируют ход пищевар. процесса на протяжении всего жкт. Гастроинтестин. гормоны: гастрин - усиливает секрецию желудка и поджелудочнлй железы; ВИП (вазоактивный интестинальный пептид) - расслабление гладких мышц кров. сосудов; соматостатин - торможение жк гормонов и секреции желез желудка; вещ-во Р усиление моторики кишечника, слюноотделения. см. в предыдущем |