Главная страница
Навигация по странице:

  • 10.Исследование содержания предшественников синтеза и метаболитов гормонов в крови и моче.

  • Гипоталамо-гипофизарная система, её функциональные связи. Эндокринная функция гипоталамуса

  • Гипофиз, его строение и внутренняя секреция. Средняя и задняя доли

  • Передняя доля (аденогипофиз

  • Задняя доля (нейрогипофиз)

  • Гормоны задней доли гипофиза

  • Промежуточная (средняя) доля

  • Щитовидная и паращитовидные железы, их гормоны и регуляция деятельности.

  • Йодсодержащие гормоны выполняют следующие функции

  • Физиология. Нормальная физиология ответы на экзамен с задачами. Нормальная физиология как предмет, её задачи и значение для медицины. Связь физиологии с другими науками. Роль физиологии в деятельности человека


    Скачать 0.65 Mb.
    НазваниеНормальная физиология как предмет, её задачи и значение для медицины. Связь физиологии с другими науками. Роль физиологии в деятельности человека
    АнкорФизиология
    Дата22.01.2020
    Размер0.65 Mb.
    Формат файлаdocx
    Имя файлаНормальная физиология ответы на экзамен с задачами.docx
    ТипДокументы
    #105264
    страница19 из 29
    1   ...   15   16   17   18   19   20   21   22   ...   29

    1 .Метод экстирпации - изучение последствий удаления эндокринной железы или инкреторного органа. С помощью этого метода были открыты инкреторная функция поджелудочной железы и ее роль в развитии сахарного диабета (Дж.Меринг, О.Минковский, 1889), роль гипофиза в регуляции роста тела, жизненная значимость коры надпочечников и др.

    Метод избирательного разрушения или подавления инкреторных клеток в организме. Например, при введении уреида мезоксалевой кислоты-аллоксана, происходит избирательный некроз бета-клеток островков Лангерганса, что позволяет изучать последствия нарушения продукции инсулина без изменения других функций поджелудочной железы. Производное оксихинолина-дитизон вмешивается в метаболизм бета-клеток, образует комплекс с цинком, что также нарушает их инкреторную функцию.

    Химический анализ экстрактов и синтез гормональных препаратов. Производя химический структурный анализ экстрактов из эндокринной ткани, удалось установить химическую природу и идентифицировать гормоны эндокринных органов, что в последующем привело к получению искусственным путем эффективных гормональных препаратов для исследовательских и лечебных целей.

    Метод введения экстрактов эндокринной железы или химически чистых гормонов интактным животным или после удаления соответствующей железы (заместительная «терапия»). Благодаря применению этого метода было установлено наличие инсулина и соматотропина, тиреоидных гормонов и паратгормона, кортикостероидов и др. Разновидностью метода является кормление животных сухой железой или препаратами, приготовленными из тканей. Использование чистых гормональных препаратов позволило установить их биологические эффекты. создаваемый искусственный избыток гормона вызывал подавление секреции эндокринного органа и даже атрофию железы.

    Метод трансплантации эндокринных желез. Пересадка железы может производится тому же животному после ее предварительного удаления (аутотрансплантация) или интактным животным. опыты трансплантации дали богатый фактический материал о биологических эффектах гормонов половых желез.

    Метод парабиоза или создания общего кровообращения. Осуществляется путем наложения анастомозов между кровеносными сосудами двух животных. Метод позволяет оценить роль гуморальных факторов в изменении функций интактного организма одной особи при вмешательстве в эндокринную систему другой особи. Особенно важными являются исследования сросшихся близнецов, имеющих общее кровообращение, но раздельные нервные системы. У одной из двух сросшихся сестер описан случай беременности и родов, после чего лактация наступила у обеих сестер, и кормление было возможно из четырех молочных желез.

    Метод введения в организм радиоактивных изотопов. Этот метод позволяет изучать процессы синтеза гормонов в эндокринной ткани, депонирование и распределение гормонов в организме, пути их выведения. Примером использования этого метода является изучение щитовидной железы с помощью радиоактивного йода, который захватывается из крови и включается в образующиеся гормоны пропорционально интенсивности их синтеза. Для изучения мест связывания, накопления и метаболизма гормонов, их метят с помощью радиоактивных атомов, вводят в организм и применяют ауторадиографию. Срезы изучаемых тканей помещают на радиочувствительный фотоматериал, типа рентгеновской пленки, проявляют и места затемнения сравнивают с фотографиями гистологических срезов.

    Сравнение физиологической активности крови, притекающей к органу и оттекающей от него, позволяет выявить секрецию в кровь биологически активных метаболитов и гормонов.

    Исследование содержания гормонов в крови и моче. Этот метод является одним из наиболее точных для оценки секреторной деятельности эндокринных органов и тканей, но он не дает характеристики биологической активности и степени гормональных эффектов в тканях.

    10.Исследование содержания предшественников синтеза и метаболитов гормонов в крови и моче. Нередко гормональный эффект в значительной степени определяется активными метаболитами гормона. В других случаях предшественники синтеза и метаболиты, концентрация которых пропорциональна уровням гормона, более доступны для исследования. Метод позволяет не только оценить гормонопродуцирующую активность эндокринной ткани, но и выявить особенности метаболизма гормонов.

    - Исследование больных с недостаточной или избыточной функцией железы. Это может дать ценную информацию о физиологических эффектах и роли гормонов эндокринной железы.

    - Методы гистологического и гистохимического исследования эндокринных тканей позволяет оценить не только структурные, но и функциональные характеристики клеток, в частности, интенсивность образования, накопления и выведения гормонов. Например, явления нейросекреции гипоталамических нейронов, эндокринная функция кардиомиоцитов предсердий были обнаружены с помощью гистохимических методов.

    - Методы генной инженерии. Эти методы реконструкции генетического аппарата клетки позволяют не только исследовать механизмы синтеза гормонов, но и активно вмешаться в них. Механизмы особенно перспективны для практического применения в случаях стойкого нарушения синтеза гормонов, как это случается при сахарном диабете. Примером экспериментального использования метода может служить исследование французских ученых, которые в 1983 году осуществили пересадку в печень крысы гена, контролирующего синтез инсулина. Внедрение этого гена в ядра клеток печени крысы привело к тому, что в течение месяца клетки печени синтезировали инсулин.



     

    Важным фактором, определяющим продукцию гормона, является состояние регулируемой функции, т.е. выработка гормонов регулируется по принципу саморегуляции.

    Отечественный ученый М.М.Завадовский в 1941 году, изучая закономерности в регуляции деятельности эндокринных желез, впервые сформулировал принцип «плюс-минус взаимодействие», получивший в дальнейшем название «принцип обратной связи».

    Различают положительную обратную связь, когда повышение уровня гормона в крови стимулирует высвобождение другого гормона (повышение уровня эстрадиола вызывает высвобождение ЛГ в гипофизе), и отрицательную обратную связь, когда повышенный уровень одного гормона угнетает секрецию и высвобождение другого (повышение концентрации тиреоидных гормонов в крови снижает секрецию ТТГ в гипофизе).

    Вся гормональная регуляция осуществляется механизмами, функционирующими по принципу обратной связи, в которых четко выделяются различные уровни взаимодействия.

    Первый уровень (или контур) саморегуляции наиболее простой тип обратной связи. Здесь продукция гормона мало зависит от гипофиза и гипоталамуса, а в основном определяется изменением химического состава крови.

    Второй контур саморегуляции замыкается на уровне гипофиза, который контролирует работу многих эндокринных желез. Этот механизм осуществляется за счет тропных гормонов. Например, гипофиз выбросил в кровь избыток ТТГ, щитовидная железа усиливает выработку тироксина и трийодтиронина, они в крови находятся в избытке (плюс взаимодействие). Повышенная концентрация гормона в крови автоматически уменьшает дальнейшую выработку ТТГ (минус взаимодействие). Таким образом, гипофиз включен в систему нервно-гуморальной регуляции, работающей по обратной гуморальной связи, которая автоматически поддерживает продукцию гормонов железами-мишенями.

    Наконец, имеется третий контур саморегуляции эндокринных желез, который замыкается на уровне гипоталамуса, входящего в состав промежуточного мозга. Некоторые ядра гипоталамуса обладают способностью к нейросекреции - выработке нейромодуляторов (дофамин, серотонин, норадреналин, ацетилхолин, у-амнномасляная кислота), принимающих участие в регуляции психической деятельности и поведения, а также нейрогормонов, регулирующих функциональную активность гипофиза. Нейросекреты - это промежуточное звено между нервными и гуморальными механизмами регуляции, которое соединяет их воедино. Гипоталамус и гипофиз имеют общее кровоснабжение. Кровь оттекающая от гипоталамуса через портальную систему омывает гипофиз и оказывает влияние на выработку им гормонов. Гипофизотропные гормоны гипоталамуса делятся на гормоны, усиливающие (высвобождающие, рилизииг-гормоны, либерины) и угнетающие (ингибирующне, статины) выделение соответствующих тропных гормонов передней доли гипофиза.

    Выработка нейросекрета гипоталамусом регулируется нервным путем, но главная роль в образовании этих нейрогормонов принадлежит механизму обратной гуморальной связи. Их продукция зависит от концентрации в крови гормонов той или иной железы и соответствующего гормона гипофиза, а также от информации поступающей от тканей, потребляющих данные гормоны.

    В регуляции эндокринных желез принимает участие и ЦНС. Большинство нервных и гуморальных путей регуляции сходится на уровне гипоталамуса и благодаря этому в организме образуется единая нейроэндокринная регуляторная система. При стрессовых ситуациях, когда возбуждается симпатический отдел ВНС, в крови резко повышается концентрация адреналина. Большое значение нервные влияния имеют и в регуляции выработки гормонов гипофиза. Так при болевом раздражении увеличивается количество АКТГ.



    1. Гипоталамо-гипофизарная система, её функциональные связи. Эндокринная функция гипоталамуса.

    Это объединение структур гипофиза и гипоталамуса, выполняющее функции как нервной системы, так и эндокринной. Этот нейроэндокринный комплекс является примером того, насколько тесно связаны в организме млекопитающих нервный и гуморальный способы регуляции.

    Гипоталамо-гипофизарная система состоит из ножки гипофиза, начинающейся в вентромедиальной области гипоталамуса, и трёх долей гипофиза: аденогипофиз (передняя доля), нейрогипофиз (задняя доля) и вставочная доля гипофиза. Работа всех трёх долей управляется гипоталамусом с помощью особых нейросекреторных клеток. Эти клетки выделяют специальные гормоны — рилизинг-гормоны. Рилизинг-факторы попадают в гипофиз, а точнее в аденогипофиз через воротную вену гипофиза.

    Существует два типа рилизинг-факторов.

    освобождающие (под их действием клетки аденогипофиза выделяют гормоны)

    останавливающие (под их действием экскреция гормонов аденогипофиза прекращается)

    На нейрогипофиз и вставочную долю гипоталамус влияет с помощью специальных нервных волокон, а не нейросекреторных клеток.

    В гипоталамусе имеются нейроны обычного типа и нейросекреторные клетки. И те и другие вырабатывают белковые секреты и медиаторы, однако в нейросекреторных клетках преобладает белковый синтез, а нейросекрет выделяется в лимфу и кровь. Эти клетки трансформируют нервный импульс в нейрогормональный.

    Гипоталамус контролирует деятельности эндокринной системы человека благодаря тому, что его нейроны способны выделять нейроэндокринные трансмиттеры (либерины и статины), стимулирующие или угнетающие выработку гормонов гипофизом. Гипоталамус является центром регуляции эндокринных функций, он объединяет нервные и эндокринные регуляторные механизмы в общую нейроэндокринную систему.

    В последние годы из гипоталамуса выделены обладающие морфиноподобным действием энкефалины и эндорфины. Считают, что они влияют на поведение (оборонительные, пищевые, половые реакции) и вегетативные процессы, обеспечивающие выживание человека. Таким образом, гипоталамус регулирует все функции организма, кроме ритма сердца, кровяного давления и спонтанных дыхательных движений.



    1. Гипофиз, его строение и внутренняя секреция. Средняя и задняя доли

    Гипофиз состоит из двух крупных различных по происхождению и структуре долей: передней — аденогипофиза (составляет 70—80 % массы органа) и задней — нейрогипофиза. Вместе с нейросекреторными ядрами гипоталамуса гипофиз образует гипоталамо-гипофизарную систему, контролирующую деятельность периферических эндокринных желёз.

    Передняя доля (аденогипофиз) Передняя доля гипофиза , или аденогипо́физ, состоит из железистых эндокринных клеток различных типов, каждый из которых, как правило, секретирует один из гормонов.

    Гормоны передней доли гипофиза:

    Тропные, так как их органами-мишенями являются эндокринные железы. Гипофизарные гормоны стимулируют определенную железу, а повышение уровня в крови выделяемых ею гормонов подавляет секрецию гормона гипофиза по принципу обратной связи.

    - Тиреотропный гормон — главный регулятор биосинтеза и секреции гормонов щитовидной железы. Активирует функцию щитовидной железы, вызывает гиперплазию ее железистой ткани, стимулирует выработку тироксина и трийодтиронина. Образование ТТГ стимулируется тиреолиберином гипоталамуса, а угнетается соматостатином.

    - Адренокортикотропный гормон стимулирует кору надпочечников.

    - Гонадотропные гормоны: фолликулостимулирующий гормон способствует созреванию фолликулов в яичника, у мужчин под его влиянием происходит образование сперматозоидов; лютеинизирующий гормон вызывает овуляцию и образование желтого тела, стимулирует образование женских и мужских половых гормонов соответственно.

    - Соматотропный гормон — важнейший стимулятор синтеза белка в клетках, образования глюкозы и распада жиров, а также роста организма. В сутки секретируется 500-875 мкг этого гормона.

    Соматотропин необходим для нормального линейного роста. Его действие на процессы роста являются опосредованными через факторы сыворотки крови. Эти факторы получили название соматомединов и именно они ответственны за стимуляцию роста. К настоящему времени идентифицировано 4 различных соматомедина.

    Представляет собой анаболический гормон. Он стимулирует поступление аминокислот в клетки, синтез белка за счет ускорения трансляции и активации синтеза РНК, увеличивает деление клеток и рост ткани, подавляет протеолитические ферменты. Стимулирует включение сульфата в хрящи, тимидина в ДНК, пролина в коллаген, уритина в РНК. Гормон вызывает положительный азотистый баланс. Стимулирует рост эпифизарных хрящей и их замену костной тканью, активируя щелочную фосфатазу. Эти эффекты осуществляется прямо и опосредованно (через соматомедины).

    Он повышает продукцию инсулина как из-за прямого эффекта на Р-клетки, так и из-за вызываемой гормоном гипергликемии, обусловленной активацией секреции глюкагона, распадом гликогена в печени и мышцах, угнетением утилизации глюкозы в тканях.

    Соматотропин находится под двойной гипоталамической регуляцией. Его секрецию стимулирует соматолиберин и ингибирует соматостатин.

    - Лютеотропный гормон (пролактин) стимулирует рост молочных желез и способствует образованию молока, стимулирует рост желтого тела и выработку им прогестерона, влияет на водно-солевой баланс, усиливая эффекты альдостерона и вазопрессина.

    Стимуляторами секреции пролактина являются пролактолиберин, тиролиберин, серотонин, окситоцин, вазопрессин.

    При гипофункции передней доли гипофиза в детстве наблюдается карликовость. При гиперфункции передней доли гипофиза в детстве развивается гигантизм.

    Задняя доля (нейрогипофиз) Задняя доля гипофиза или нейрогипо́физ состоит из:

    -нервная доля. Образована клетками эпендимы (питуицитами) и окончаниями аксонов нейросекреторных клеток паравентрикулярного и супраоптического ядер гипоталамуса промежуточного мозга, в которых и синтезируются вазопрессин (антидиуретический гормон) и окситоцин, транспортируемые по нервным волокнам, составляющим гипоталамо-гипофизарный тракт, в нейрогипофиз. В задней доле гипофиза эти гормоны депонируются и оттуда поступают в кровь.

    - воронка. Соединяет нервную долю со срединным возвышением. Воронка гипофиза, соединяясь с воронкой гипоталамуса, образует ножку гипофиза.

    Гормоны задней доли гипофиза:

    аспаротоцин

    вазопрессин (антидиуретический гормон, АДГ) (депонируется и секретируется)

    Вазопрессин выполняет в организме две функции:

    усиление реабсорбции воды в собирательных трубочках почек (это антидиуретическая функция вазопрессина); влияние на гладкую мускулатуру артериол.

    Однако название «вазопрессин» не совсем соответствует свойству этого гормона суживать сосуды. В нормальных физиологических концентрациях он сосудосуживающим эффектом не обладает. Сужение сосудов может происходить при экзогенном внедрении гормона в больших количествах или же при кровопотере, когда гипофиз интенсивно выделяет этот гормон. При недостаточности нейрогипофиза развивается синдром несахарного диабета, при котором с мочой в день может теряться значительное количество воды (15л/сутки), так как снижается её реабсорбция в собирательных трубочках.

    вазотоцин

    валитоцин

    глумитоцин

    изотоцин мезотоцин

    окситоцин (депонируется и секретируется)

    Окситоцин во время беременности не действует на матку, так как под воздействием прогестерона, выделяемого жёлтым телом, она становится нечувствительной к данному гормону. Окситоцин способствует сокращению миоэпителиальных клеток, способствующих выделению молока из молочных желез. Промежуточная (средняя) доля У многих животных хорошо развита промежуточная доля гипофиза, расположенная между передней и задней долями. По происхождению она относится к аденогипофизу. У человека она представляет тонкую прослойку клеток между передней и задней долями, довольно глубоко заходящую в ножку гипофиза. Эти клетки синтезируют свои специфические гормоны — меланоцитстимулирующие и ряд других.



    1. Щитовидная и паращитовидные железы, их гормоны и регуляция деятельности.

    Щитовидная железа состоит из двух долей, соединенных перешейком, расположена на шее по обеим сторонам от трахеи ниже щитовидного хряща. Ткань железы состоит из фолликулов, заполненных коллоидом, в котором имеются йодсодержащие гормоны тироксин ( Т4) и трийодтиронин (Т3) в связанном состоянии с белком тиреоглобуллином. Парафолликулярные клетки вырабатывают гормон тиреокальцитонин.

    Йодсодержащие гормоны выполняют следующие функции:

    Усиление всех видов обмена, повышение основного обмена и усиление энергообразования в организме;

    Влияние на процессы роста, умственного и физического развития;

    Увеличение ЧСС;

    Стимуляция деятельности пищеварительного тракта;

    Повышение температуры тела за счет усиления теплопродукции;

    Повышение возбудимости симпатической нервной системы.

    Секреция гормнов щитовидной железы регулируется тиреотропным гормоном аденогипофиза, тиреолиберином гипоталамуса, содержанием йода в крови ( по принципу обратной связи).
    1   ...   15   16   17   18   19   20   21   22   ...   29


    написать администратору сайта