Главная страница
Навигация по странице:

  • Питательные среды готовят

  • В бактериологической практике

  • Требования, предъявляемые к питательным средам.

  • Методы культивирования и выделение чистой культуры анаэробов. Методы выделения чистых культур анаэробов.· Метод Цейсслера

  • Международная классификация и характеристика ферментов бактерий. Методы определения гликолитических и протеолитических ферментов бактерий. Идентификация бактерий по ферментативной активности.

  • Идентификация бактерий по фер­ментативной активности.

  • Механизмы действия на микроорганизмы химических веществ. Дезинфекция, асептика, антисептика. Химиотерапия. Действие химических веществ

  • Действие физических факторов на микроорганизмы (температура, высушивание, свет, ультразвук, радиация). Стерилизация: методы, аппаратура, контроль режима стерилизации.

  • Влияние физических факторов. Влияние температуры

  • Контроль режима стерилизации (микробиологический, физический, химический).

  • Физический метод

  • Бактериологический

  • Микробиология. Общая микробиология


    Скачать 476.77 Kb.
    НазваниеОбщая микробиология
    АнкорМикробиология
    Дата13.05.2021
    Размер476.77 Kb.
    Формат файлаdocx
    Имя файлаEKZ_MIKRA__MOYa_ZhIZN_NE_BUDET_PREZhNEJ.docx
    ТипДокументы
    #204302
    страница5 из 18
    1   2   3   4   5   6   7   8   9   ...   18

    Искусственные питательные среды, их классификация. Требования, предъявляемые к питательным средам.

    Питательной средой в микробиологии называют среды, содер­жащие различные соединения сложного или простого состава, которые применяются для размножения бактерий или других микроорганизмов в лабораторных или промышленных условиях.

    Питательные среды готовят из продуктов животного или рас­тительного происхождения. Большое значение имеет наличие в питательной среде ростовых факторов, которые катализируют метаболические процессы микробной клетки (витамины груп­пы В, никотиновая кислота и др.).

    Искусственные среды готовят по определенным рецептам из различных настоев или отваров животного или растительного про­исхождения с добавлением неорганических солей, угле­водов и азотистых веществ.

    В бактериологической практике чаще всего используют сухие питательные среды, которые получают на основе достижений современной биотехнологии. Для их приготовления используют экономически рентабельное непищевое сырье: утратившие срок годности кровезаменители (гидролизин—кислотный гидролизат крови животных, аминопептид — ферментативный гидролизат крови; продукты биотехнологии (кормовые дрожжи, кормовой лизин, виноградная мука, белколизин). Сухие питательные среды могут храниться в течение длительного времени, удобны при транспортировке и имеют относительно стандартный состав.

    По консистенции питательные среды могут быть жид­кими, полужидкими, плотными. Плотные среды готовят путем до­бавления к жидкой среде 1,5—2% агара, полужидкие — 0,3— 0,7 % агара. Агар представляет собой продукт переработки осо­бого вида морских водорослей, он плавится при температуре 80—86 °С, затвердевает при температуре около 40 °С и в застыв­шем состоянии придает среде плотность. В некоторых случаях для получения плотных питательных сред используют желатин (10—15%). Ряд естественных питательных сред (свернутая сы­воротка крови, свернутый яичный белок) сами по себе являются плотными.

    По целевому назначению среды подразделяют на основные, элективные и дифференци­ально-диагностические.

    К основным относятся среды, применяемые для выращивания многих бактерий. Это триптические гидролизаты мясных, рыбных продуктов, крови животных или казеина, из которых готовят жидкую среду — питательный бульон и плотную — пита­тельный агар. Такие среды служат основой для приготов­ления сложных питательных сред — сахарных, кровяных и др., удовлетворяющих пищевые потребности патогенных бак­терий.

    Элективные питательные среды предназначены для избира­тельного выделения и накопления микроорганизмов определен­ного вида (или определенной группы) из материалов, содержа­щих разнообразную постороннюю микрофлору. При создании элективных питательных сред исходят из биологических особен­ностей, которые отличают данные микроорганизмы от большин­ства других. Например, избирательный рост стафилококков на­блюдается при повышенной концентрации хлорида натрия, хо­лерного вибриона — в щелочной среде и т. д.

    Дифференциально-диагностические питательные среды при­меняются для разграничения отдельных видов (или групп) мик­роорганизмов. Принцип построения этих сред основан на том, что разные виды бактерий различаются между собой по биохи­мической активности вследствие неодинакового набора фермен­тов.

    Особую группу составляют синтетические и полусинтетиче­ские питательные среды. В состав синтетических сред входят химически чистые вещества: аминокислоты, минеральные соли, углеводы, витамины. В полусинтетические среды дополнительно включают пептон, дрожжевой экстракт и другие питательные вещества. Эти среды чаще всего применяют в научно-исследова­тельской работе и в микробиологической промышленности при получении антибиотиков, вакцин и других препаратов.

    В последние годы в целях экономии питательных сред и уско­ренной идентификации некоторых микроорганизмов (энтеробактерии, стафилококки, стрептококки и др.) применяются так на­зываемые микротест-системы (МТС). Они представляют собой полистироловые пластины с лунками, в которых содержатся сте­рильные дифференциально-диагностические среды. Стерилизацию МТС проводят УФ-облучением. Микротест-системы особенно удобны при массовых бактериологических исследованиях в практических лабораториях.

    Требования, предъявляемые к питательным средам.

    Любая питательная среда должна отвечать следующим тре­бованиям: содержать все необходимые для размножения микроорганизмов вещества в легкоусвояемой форме; иметь оптимальные влажность, вязкость, рН, быть изотоничной и по воз­можности прозрачной. Каждую питательную среду стерилизуют определенным способом в зависимости от ее состава.

    1. Методы культивирования и выделение чистой культуры анаэробов.

    Методы выделения чистых культур анаэробов.

    · Метод Цейсслера. Исследуемый материал сеют штрихами по поверхности плотной среды. Создают анаэробные условия. И инкубируют при 37 градусах 24-72ч. Изолированные колонии анаэробов пересевают на среду контроля стерильности или среду Китта-Тароцци.

    · Метод Вейнберга. Несколько капель исследуемого материал вносят в пробирку с 4-5мл изотонического раствора. Перемешивают запаянным капилляром переносят в пробирку с охлажденным до 45-50 градусов сахарным агаром, разлитым высоким столбиком. После перемешивания этим же капилляром засевают еще две пробирки с сахарным агаром и быстро охлаждают под струей воды. Выросшие в глубине колонии пересевают на СКС или среду Китта-Тароцци.

    · Метод Перетца. Готовят разведение материала, как указано выше. Содержимое пробирки с соответствующим разведением выливают в чашку Петри, на дне которой на двух палочках лежит стеклянная пластина 6х6см. среду заливают так, что бы она заполнила пространство между пластиной и дном чашки. При появлении роста пластинку поднимают и чистые колонии пересевают.


    1. Международная классификация и характеристика ферментов бактерий. Методы определения гликолитических и протеолитических ферментов бактерий. Идентификация бактерий по ферментативной активности.

    В основе всех метаболических реакций в бактериальной клетке лежит деятельность ферментов, которые принадлежат к 6 клас­сам: оксиредуктазы, трансферазы, гидролазы, лигазы, лиазы, изомеразы. Ферменты, образу­емые бактериальной клеткой, могут локали­зоваться как внутри клетки — эндоферменты, так и выделяться в окружающую среду — экзоферменты. Экзоферменты играют большую роль в обеспечении бактериальной клетки доступными для проникновения внутрь ис­точниками углерода и энергии. Большинство гидролаз является экзоферментами, которые, выделяясь в окружающую среду, расщепля­ют крупные молекулы пептидов, полисаха­ридов, липидов до мономеров и димеров, способных проникнуть внутрь клетки. Ряд экзоферментов, например гиалуронидаза, коллагеназа и другие, являются ферментами агрессии. Некоторые ферменты локализо­ваны в периплазматическом пространстве бактериальной клетки. Они участвуют в про­цессах переноса веществ в бактериальную клетку. Ферментативный спектр является таксономическим признаком, характерным для семейства, рода и — в некоторых слу­чаях — для видов. Поэтому определением спектра ферментативной активности поль­зуются при установлении таксономического положения бактерий. Наличие экзофермен­тов можно определить при помощи диффе­ренциально-диагностических сред, поэтому для идентификации бактерий разработаны специальные тест-системы, состоящие из набора дифференциально-диагностических сред.

    Идентификация бактерий по фер­ментативной активности.

    Наиболее ча­сто определяют ферменты класса гидролаз и оксидоредуктаз, используя специальные методы и среды.

    Для определения протеолитической активности мик­роорганизмы засевают в столбик желатина уколом. Че­рез 3—5 дней посевы просматривают и отмечают харак­тер разжижения желатина. При разложении белка некоторыми бактериями могут выделяться специфические продукты — индол, сероводород, аммиак. Для их опреде­ления служат специальные индикаторные бумажки, ко­торые помещают между горлышком и ватной пробкой в пробирку с МПБ или (и) пептонной водой, засеянными изучаемыми микроорганизмами. Индол (продукт разло­жения триптофана) окрашивает в розовый цвет полоску бумаги, пропитанной насыщенным раствором щавелевой кислоты. Бумага, пропитанная раствором ацетата свинца, в присутствии сероводорода чернеет. Для определения аммиака используют красную лакмусовую бумажку.

    Для многих микроорганизмов таксономическим при­знаком служит способность разлагать определенные углеводы с образованием кислот и газообразных продук­тов. Для выявления этого используют среды Гисса, со­держащие различные углеводы (глюкозу, сахарозу, маль­тозу, лактозу и др.). Для обнаружения кислот в среду добавлен реактив Андреде, который изменяет свой цвет от бледно-желтого до красного в интервале рН 7,2—6,5, поэтому набор сред Гисса с ростом микроорганизмов называют «пестрым рядом».

    Для обнаружения газообра­зования в жидкие среды опускают поплавки или исполь­зуют полужидкие среды с 0,5% агара.

    Для того чтобы оп­ределить интенсивное кислотообразование, характерное для брожения смешанного типа, в среду с 1% глюкозы и 0,5% пептона (среда Кларка) добавляют индикатор метиловый красный, который имеет желтый цвет при рН 4,5 и выше, и красный —при более низких значениях рН.

    Гидролиз мочевины определяют по выделению ам­миака (лакмусовая бумажка) и подщелачиванию среды.

    При идентификации многих микроорганизмов исполь­зуют реакцию Фогеса — Проскауэра на ацетоин — проме­жуточное соединение при образовании бутандиола из пировиноградной кислоты. Положительная реакция свиде­тельствует о наличии бутандиолового брожения.

    Обнаружить каталазу можно по пузырькам кислорода, которые начинают выделяться сразу же после смешива­ния микробных клеток с 1 % раствором перекиси водоро­да.

    Для определения цитохромоксидазы применяют ре­активы: 1) 1% спиртовый раствор сс-нафтола-1; 2) 1% водный раствор N-диметил-р-фенилендиамина дигидро-хлорида. О наличии цитохромоксидазы судят по синему окрашиванию, появ­ляющемуся через 2—5 мин.

    Для определения нитритов используют реак­тив Грисса: По­явление красного окрашивания свидетельствует о нали­чии нитритов

    1. Механизмы действия на микроорганизмы химических веществ. Дезинфекция, асептика, антисептика. Химиотерапия.

    Действие химических веществ. Химические вещества могут ока­зывать различное действие на микроорганизмы: служить источ­никами питания; не оказывать какого-либо влияния; стимули­ровать или подавлять рост. Химические вещества, уничтожающие микроорганизмы в окружающей среде, называются дезинфи­цирующими. Антимикробные хи­мические вещества могут обладать бактерицидным, вирулицидным, фунгицидным действием и т.д.

    Химические вещества, используемые для дезинфекции, отно­сятся к различным группам, среди которых наиболее широко представлены вещества, относящиеся к хлор-, йод- и бромсодержащим соединениям и окислителям.

    Антимикробным действием обладают также кислоты и их соли (оксолиновая, салициловая, борная); щелочи (аммиак и его соли,

    Дезинфекция — процедура, пре­дусматривающая обработку загрязненного микробами предмета с целью их уничтоже­ния до такой степени, чтобы они не смогли вызвать инфекцию при использовании дан­ного предмета. Как правило, при дезинфек­ции погибает большая часть микробов (в том числе все патогенные), однако споры и некоторые резистентные вирусы могут остаться в жизнеспособном состоянии.

    Асептика – комплекс мер, направленных на предупреждение попадания возбудителя инфекции в рану, органы больного при операциях, лечебных и диагностических процедурах. Методы асептики применяют для борьбы с экзогенной инфекцией, источниками которой являются больные и бактерионосители.

    Антисептика – совокупность мер, направленных на уничтожение микробов в ране, патологическом очаге или организме в целом, на предупреждение или ликвидацию воспалительного процесса.

    Химиотерапия — специфическое антимикробное, антипаразитар­ное лечение при помощи химических веществ. Эти вещества обла­дают важнейшим свойством — избирательностью действия против болезнетворных микроорганизмов в условиях макроорганизма

    1. Действие физических факторов на микроорганизмы (температура, высушивание, свет, ультразвук, радиация). Стерилизация: методы, аппаратура, контроль режима стерилизации.

    Влияние физических факторов.

    Влияние температуры. Различные группы микроорга­низмов развиваются при определенных диапазонах температур. Бактерии, растущие при низкой температуре, называют психрофилами, при средней (около 37 °С) — мезофилами, при вы­сокой — термофилами.

    К психрофильным микроорганизмам относится боль­шая группа сапрофитов — обитателей почвы, морей, пресных водоемов и сточных вод (железобактерии, псевдомонады, све­тящиеся бактерии, бациллы). Некоторые из них могут вызывать порчу продуктов питания на холоде. Способностью расти при низких температурах обладают и некоторые патогенные бакте­рии (возбудитель псевдотуберкулеза размножается при темпера­туре 4 °С). В зависимости от температуры культивирования свой­ства бактерий меняются. Интервал температур, при кото­ром возможен рост психрофильных бактерий, колеблется от -10 до 40 °С, а температурный оптимум — от 15 до 40 °С, прибли­жаясь к температурному оптимуму мезофильных бактерий.

    Мезофилы включают основную группу патогенных и услов­но-патогенных бактерий. Они растут в диапазоне температур 10— 47 °С; оптимум роста для большинства из них 37 °С.

    При более высоких температурах (от 40 до 90 °С) развива­ются термофильные бактерии. На дне океана в горячих сульфидных водах живут бактерии, развивающиеся при темпе­ратуре 250—300 °С и давлении 262 атм.

    Термофилы обитают в горячих источниках, участвуют в процессах самонагревания на­воза, зерна, сена. Наличие большого количества термофилов в почве свидетельствует о ее загрязненности навозом и компос­том. Поскольку навоз наиболее богат термофилами, их рассмат­ривают как показатель загрязненности почвы.

    Хорошо выдерживают микроорганизмы действие низких тем­ператур. Поэтому их можно долго хранить в замороженном со­стоянии, в том числе при температуре жидкого газа (—173 °С).

    Высушивание. Обезвоживание вызывает нарушение функ­ций большинства микроорганизмов. Наиболее чувствительны к высушиванию патогенные микроорганизмы (возбудители гоно­реи, менингита, холеры, брюшного тифа, дизентерии и др.). Более устойчивыми являются микроорганизмы, защищенные слизью мокроты.

    Высушивание под вакуумом из замороженного состояния — лиофилизацию — используют для продления жизнеспособнос­ти, консервирования микроорганизмов. Лиофилизированные куль­туры микроорганизмов и иммунобиологические препараты дли­тельно (в течение нескольких лет) сохраняются, не изменяя своих первоначальных свойств.

    Действие излучения. Неионизирующее излучение — уль­трафиолетовые и инфракрасные лучи солнечного света, а также ионизирующее излучение — гамма-излучение радиоактивных ве­ществ и электроны высоких энергий губительно действуют на микроорганизмы через короткий промежуток времени. УФ-лучи применяют для обеззараживания воздуха и различных предме­тов в больницах, родильных домах, микробиологических лабо­раториях. С этой целью используют бактерицидные лампы УФ-излучения с длиной волны 200—450 нм.

    Ионизирующее излучение применяют для стерилизации од­норазовой пластиковой микробиологической посуды, питатель­ных сред, перевязочных материалов, лекарственных препаратов и др. Однако имеются бактерии, устойчивые к действию иони­зирующих излучений, например Micrococcus radiodurans была вы­делена из ядерного реактора.

    Стерилизация- обработка объектов при которой достигается полное уничтожение всех микроорганизмов.

    Прокаливание- в пламени горелки пркаливают бактериологические петли, иглы, пинцеты, ножницы.

    Кипячение- используют для стерилизауии металлических инструментов, стеклянных изделий, резиновых трубок, пробок.

    Стерилизация сухим жаром- для стеклянной посуды.

    Автоклавирование- насыщенным паром под давлением. Проводится при температуре выше кипения воды.

    Текучим паром- стерилизация под давлением.

    Пастерилизация- уничтожение в материале только вегетативных фори микроорганизмов и применяется в пищевой пром-ти.

    Холодная стерилизация- осуществляется в отношении материалов, сред и растворов, кот изменяют св-ва при тепловой стерилизации.

    Контроль режима стерилизации (микробиологический, физический, химический).

    Контроль работы паровых и воздушных стерилизаторов осуществляют физическим, химическим и бактериологическим методами.

    Физический метод контроля работы стерилизаторов осуществляется с помощью температуры и давления.

    Химический метод контроля работы стерилизаторов осуществляется с помощью химических тестов и термохимических индикаторов, изменяющих свое агрегатное состояние и цвет при достижении определенного для него плавления: 



    • для паровых стерилизаторов используется мочевина (карбамид) с розовым красителем температура плавления 132 градуса Цельсия

    • бензойная кислота с фуксином — температура плавления 120°С; термоиндикаторная бумага, изменяющая свой цвет под воздействием определенной температуры (l20°C-132 0С);

    • для воздушных стерилизаторов: тиомочевина (тиокарбамид) без красителя, температура плавления 180°С, а также янтарная кислота, температура плавления которой 180°С

    • термоиндикаторная бумага изменяет свой цвет при температуре 180°С.


    Бактериологический (биологический) метод контроля стерильности проводят один раз в месяц. Контроль
    может свидетельствовать об инфицировании стерилизуемых объектов и указать на вид микробной флоры. Результаты посевов получают через 48-72 часа.

    1. 1   2   3   4   5   6   7   8   9   ...   18


    написать администратору сайта