Главная страница

ГФ11-1. Общие методы анализа редакционная коллегия государственной фармакопеи ссср


Скачать 1.83 Mb.
НазваниеОбщие методы анализа редакционная коллегия государственной фармакопеи ссср
Дата11.06.2020
Размер1.83 Mb.
Формат файлаdoc
Имя файлаГФ11-1.doc
ТипДокументы
#129576
страница13 из 42
1   ...   9   10   11   12   13   14   15   16   ...   42

Примечание. Для получения слоя толщиной около 100-150 мкм нанесение указанного выше количества массы проводят на пластинки с общей площадью 200 кв. см.

Способ 2. Для получения закрепленного слоя сорбента толщиной в несколько десятков микрон 2-3 г гипса растирают в ступке в 40 мл метилового спирта. В суспензию гипса, продолжая растирание, добавляют 40 г силикагеля или окиси алюминия (200-400 меш) и 140 мл хлороформа. Полученную суспензию сорбента из расчета 4,5 мл на 100 кв. см поверхности выливают на тщательно вымытые сухие стеклянные пластинки, расположенные горизонтально. Пластинки, если в частной статье не указано иначе, сушат на воздухе в течение 10-15 мин.

Суспензии сорбентов сохраняют в колбах с притертой пробкой, тщательно взбалтывая перед употреблением.

Способ 3. Для приготовления незакрепленного слоя сорбента последний насыпают на горизонтально расположенное матовое стекло и разравнивают до получения слоя толщиной 1-2 мм валиком из нержавеющей стали диаметром 6-8 мм с цилиндрическими утолщениями на обоих концах. Диаметр утолщения должен превышать на 2-4 мм диаметр валика (соответственно предполагаемой толщине слоя). Длина средней части валика должна быть на 20-30 мм меньше ширины стекла, на которое наносится слой сорбента. Вместо металлического валика можно использовать стеклянную палочку с надетыми на концы кусками резиновой или полиэтиленовой трубки, имеющей подходящую толщину стенки и диаметр.
Методика хроматографического разделения
Для разделения веществ методом хроматографии в тонком слое сорбента используют хроматографические камеры подходящего размера. На дно камеры наливают подвижную фазу в количестве, достаточном для образования слоя глубиной 0,5 см, камеру закрывают и выдерживают для насыщения парами растворителей 30-60 мин. Стенки камеры для полноты насыщения можно обкладывать фильтровальной бумагой. Анализируемый раствор наносят микропипеткой или микрошприцем на линию старта, проведенную на расстоянии 2-3 см от нижнего края пластинки, так, чтобы пятна образцов отстояли друг от друга и от краев слоя сорбента не менее чем на 2 см. Нежелательное растекание пятен анализируемых проб при нанесении предотвращают путем периодического подсушивания.

После окончательного высыхания нанесенных на линию старта пятен пластинку вносят в камеру. Нижний край пластинки при этом должен погрузиться в подвижную фазу на 0,5-1 см.

Пластинки с закрепленным слоем сорбента располагают под углом 60-90 град., а пластинки с незакрепленным слоем сорбента - под углом 15-20 град. к поверхности жидкости. Когда фронт растворителя пройдет 10-15 см, пластинку вынимают, отмечают положение фронта и открывают пятна хроматографировавшихся веществ, как указано в соответствующей частной статье. Опрыскивание незакрепленного слоя сорбента проводят немедленно после завершения процесса хроматографирования, не допуская высыхания хроматограммы. Результаты хроматографирования оценивают, как описано в разделе "Хроматография на бумаге" настоящей статьи.
СПЕЦИАЛЬНЫЕ ПРИЕМЫ ХРОМАТОГРАФИИ НА БУМАГЕ

И В ТОНКОМ СЛОЕ СОРБЕНТА
При необходимости достигнуть лучшего разделения анализируемых смесей веществ методами хроматографии на бумаге и в тонком слое сорбента можно применять специальные приемы хроматографирования - повторное и двухмерное.

Повторное хроматографирование заключается в том, что после завершения первого хроматографирования пластинку или бумагу высушивают и подвергают повторному пропусканию той же или иной подвижной фазы в том же направлении.

При двухмерном хроматографировании повторное пропускание той же или иной подвижной фазы осуществляют в направлении, перпендикулярном направлению первоначального движения. Двухмерное хроматографирование целесообразно осуществлять на квадратных пластинках или листах бумаги. Анализируемая проба при этом наносится на диагональ квадрата вблизи одного из его углов.

Двухмерную хроматографию с использованием одной и той же подвижной фазы часто применяют для проверки устойчивости веществ в условиях хроматографирования. Устойчивые вещества образуют пятна, лежащие только на диагонали пластинки или листа бумаги.
Газовая хроматография
Газовая хроматография - это хроматография, в которой подвижная фаза находится в состоянии газа или пара. В фармацевтическом анализе находит применение как газожидкостная, так и газоадсорбционная хроматография. В газожидкостной хроматографии неподвижной фазой служит жидкость, нанесенная на твердый носитель, в газоадсорбционной хроматографии неподвижной фазой служит твердый адсорбент. В дальнейшем твердый носитель с нанесенной на него жидкой фазой и адсорбент будут обозначаться термином "сорбент". Анализируемые вещества вводятся в поток газа-носителя, испаряются и в парообразном состоянии проходят через колонку с сорбентом, распределяясь в результате многократного повторения актов сорбции и десорбции между газовой и жидкой или газовой и твердой фазами. Отношение количества вещества в неподвижной фазе к количеству вещества в подвижной фазе представляет собой коэффициент распределения, который, в частности, зависит от природы растворенного вещества и количества неподвижной фазы.

Разделенные вещества элюируются из хроматографической колонки потоком газа-носителя, регистрируются детектором и фиксируются на хроматограмме в виде пиков. Полученная хроматограмма служит основой для качественного и количественного анализа смеси веществ. Метод газовой хроматографии применяется для анализа летучих веществ либо веществ, которые могут быть переведены в летучие с помощью специальных приемов и устройств в парообразное состояние.

Газовый хроматограф состоит из систем: измерения и регулирования скорости потока газа - носителя и вспомогательных газов (для детектора); ввода пробы анализируемого образца; газохроматографических колонок, а также систем детектирования, регистрации (и обработки) хроматографической информации; термостатирования и контроля температуры колонок, детектора и системы ввода проб.

Газ - носитель поступает в хроматограф из баллона через редуктор. Обычно в качестве газа - носителя применяют гелий, азот, аргон. При работе с детектором по теплопроводности предпочтительнее гелий, так как он обеспечивает максимальную чувствительность детектора благодаря высокой теплопроводности по сравнению с большинством органических соединений.

Система ввода пробы анализируемого образца обычно состоит из испарителя и мембраны из термостойкой резины, которая прокалывается при вводе пробы. Некоторые хроматографы снабжены также специальными дозаторами для ввода газообразных и твердых веществ. Анализируемые вещества поступают в колонку в парообразном состоянии, поэтому температура испарителя должна обеспечить возможно быстрое испарение компонентов пробы. Жидкие пробы вводят в хроматограф микрошприцем. Объем вводимой пробы зависит от типа детектора, количества неподвижной жидкой фазы и диаметра колонки. Обычно для насадочной аналитической колонки объем пробы жидкости составляет 0,1-1 мкл, а газа - от 0,5 до 5 мл.

Газохроматографическая колонка представляет собой прямую, спиральную или U-образную трубку, обычно изготовленную из нержавеющей стали или стекла с внутренним диаметром от 0,6 до 5 мм. Наиболее часто используются колонки длиной 1-3 м.

Эффективность газохроматографической колонки n, характеризующая степень расширения зоны определяемого вещества на выходе газохроматографической колонки, определяется по формуле:
┌ l ┐2

n = 5,545 │------ │ ,

│"ми "│

└ 0,5 ┘
где l - время удерживания вещества, выраженное в единицах

длины диаграммной ленты (например, мм); "ми " - ширина

0,5

хроматографического пика, измеренная на половине его высоты и

выраженная в тех же единицах, что и расстояние удерживания.

Степень газохроматографического разделения веществ R определяют по формуле:
"ДЕЛЬТА"l

R = ------------------------- ,

"ми " + "ми "

0,5(1) 0,5 (2)
где "ДЕЛЬТА"l - разность расстояний времен удерживания разделяемых веществ 1 и 2.

Температура колонки должна обеспечивать оптимальное разделение компонентов смеси при достаточно коротком времени анализа.

Для анализа смесей с широким диапазоном температур кипения компонентов целесообразно применять газовую хроматографию с программированием температуры либо газовую хроматографию с программированием расхода газа - носителя, либо сочетание этих видов газовой хроматографии.

Твердый носитель служит для удержания тонкой равномерной пленки неподвижной жидкой фазы, его поверхность должна обеспечивать достаточное разделение. Он должен иметь достаточную механическую прочность и быть инертным как по отношению к анализируемым веществам, так и к жидкой фазе. В качестве твердых носителей применяют материалы на основе кремнезема - диатомита или кизельгура (например, сферохромы, хроматоны, хезосорбы, целиты); фторуглеродных полимеров (например, тефлон, полихром); полистирола и сополимеров стирола и дивинилбензола (полисорбы). В отдельных случаях в качестве твердых носителей могут использоваться кристаллы некоторых солей (например, хлорида натрия), стеклянные шарики и графитированная сажа (карбохром). Наиболее часто используемый размер частиц твердого носителя от 0,1 до 0,5 мм. В зависимости от задач анализа свойства носителей можно изменять обработкой их кислотами или щелочами, а также силанизированием.

Неподвижная жидкая фаза представляет собой, как правило, высококипящую жидкость. В качестве жидкой фазы обычно применяют: индивидуальные углеводороды или их смеси, например вазелиновое масло, апиезоны; силоксановые полимеры без функциональных групп; сложные эфиры и полиэфиры; простые эфиры; полифенилы; амиды; силоксановые полимеры с привитыми нитрильными или галогеналкильными группами; одно- и многоатомные спирты; полигликоли; амины; жирные кислоты и т. д.

Перед работой с новой колонкой ее следует кондиционировать при температуре, как правило, на 10-30 град. С превышающей рабочую температуру, в токе газа-носителя в течение нескольких часов. Важно следить за тем, чтобы температура термостата колонки не превышала температурного предела применения данной фазы.

Как правило, неподвижная жидкая фаза наносится на твердый носитель в количестве 1-20% от его массы, наиболее часто используются колонки с содержанием жидкой фазы до 5-10% от массы твердого носителя. Нанесение жидкой фазы на носитель осуществляется из ее раствора в подходящем растворителе. Существует несколько методов нанесения жидкой фазы, из которых предпочтительнее пользоваться наиболее воспроизводимыми методами упаривания раствора при перемешивании в фарфоровой чашке или удаления растворителя в ротационном вакуумном испарителе.

Для обеспечения высокой эффективности разделения применяют капиллярную газовую хроматографию, в которой неподвижная жидкая фаза нанесена в виде тонкой пленки непосредственно на внутреннюю поверхность капилляра. Длина капиллярных колонок обычно составляет от 10 до 100 м, внутренний диаметр - от 0,1 до 0,6 мм.

Автоматическая система измерения, регистрации и обработки хроматографической информации включает в себя детектор, электронные устройства усиления, самопишущий измерительный прибор и интегратор.

Наиболее часто применяют детектор по теплопроводности и пламенно - ионизационный. Действие детектора по теплопроводности основано на изменении теплопроводности газа - носителя в присутствии других веществ. Он характеризуется большой универсальностью, так как чувствителен практически ко всем летучим органическим соединениям. Действие более чувствительного пламенно - ионизационного детектора основано на измерении тока насыщения ионизированной газовой смеси в зависимости от ее состава. Детектор чувствителен к органическим соединениям и нечувствителен к парам воды. Кроме этих двух детекторов, в газохроматографическом анализе лекарственных веществ, особенно если требуется повышенная чувствительность определения, можно использовать селективные детекторы, такие, как термоионный и электронозахватный.

Системы термостатирования и контроля температуры колонок, детектора, узла ввода пробы предназначены для обеспечения необходимых температурных режимов анализа.

Качественный анализ. Наиболее часто используемыми методами качественного анализа, применяемыми для идентификации лекарственных веществ, являются метод веществ - свидетелей и метод относительных удерживаний.

Метод веществ - свидетелей заключается в том, что непосредственно после анализа исследуемого образца в идентичных условиях проводят хроматографирование веществ, присутствие которых в исследуемой пробе вероятно. Совпадение времен удерживания любого из компонентов анализируемой пробы и вещества - свидетеля может служить доказательством идентичности обоих веществ. Можно ввести вещество - свидетель прямо в анализируемый образец. В этом случае критерием идентичности служит увеличение соответствующего пика на хроматограмме. Поскольку соединения различной структуры могут иметь совпадающие времена удерживания (удерживаемые объемы), для большей достоверности проводимой идентификации хроматограммы анализируемого образца и веществ - свидетелей должны быть сняты минимум на двух колонках с неподвижными жидкими фазами, отличающимися по полярности.

Для идентификации веществ по методу относительных удерживаний проводят анализ образца в условиях, указанных в конкретной методике, причем предварительно к пробе прибавляют определенное количество указанного в методике вещества сравнения. Относительное удерживание (ч) определяется по формуле:
t - t

R 0

ч = ------------,

t - t

Rср 0
где t - время газохроматографического удерживания

R

анализируемого вещества; t - время удерживания веществ сравнения;

Rср

t - время удерживания несорбирующегося вещества.

0

Количественный анализ. Количественный анализ проводят с учетом измерения параметров пиков веществ на хроматограммах. Практически используют два параметра пиков: площадь или высоту. Наиболее часто применяемым параметром является площадь пика.

Площади пиков на хроматограмме определяют одним из следующих

способов: умножением высоты пика (h) на его ширину ("ми "),

0,5

измеренную на половине его высоты; планиметрированием; с помощью

интегратора. В связи с тем что, чувствительность детекторов по

отношению к разделяемым веществам, как правило, неодинакова, в

необходимых случаях количественному определению предшествует

градуировка прибора.

Существует три основных метода количественного анализа: метод абсолютной градуировки, метод внутренней нормализации и метод внутреннего стандарта.

Метод абсолютной градуировки основан на предварительном определении зависимости между количеством введенного вещества и площадью или высотой пика на хроматограммах. В хроматограф вводят известное количество градуировочной смеси и определяют площади или высоты полученных пиков. Строят график зависимости площади или высоты пика от количества введенного вещества. Анализируют исследуемый образец, измеряют площадь или высоту пика определяемого компонента и на основании градуировочного графика рассчитывают его количество.

Метод внутренней нормализации основан на приведении к 100% суммы площадей пиков на хроматограмме.

Метод внутреннего стандарта основан на сравнении выбранного определяющего параметра пика анализируемого вещества с тем же параметром вещества для сравнения, введенного в пробу в известном количестве. В исследуемую пробу вводят известное количество такого вещества для сравнения, пик которого достаточно хорошо разделяется с компонентами исследуемой смеси. Проводят анализ пробы с веществом сравнения и рассчитывают количество определяемого вещества.

Последние два метода требуют введения поправочных коэффициентов, характеризующих чувствительность используемых типов детекторов к анализируемым веществам. Для разных типов детекторов и разных веществ коэффициент чувствительности определяется экспериментально.
УСЛОВИЯ ХРОМАТОГРАФИЧЕСКОГО АНАЛИЗА
В методике рекомендуется приводить следующие условия анализа: размеры газохроматографической колонки; тип неподвижной жидкости фазы и ее количество; тип твердого носителя; температуры колонки, испарителя и детектора; газ - носитель и его расход; тип детектора.

В случае необходимости в частных статьях могут быть приведены дополнительные условия проведения хроматографического анализа.
Высокоэффективная жидкостная хроматография

(жидкостная хроматография высокого давления)
Высокоэффективная жидкостная хроматография (жидкостная хроматография высокого давления) является вариантом колоночной жидкостной хроматографии, в которой подвижная фаза - элюент - проходит через заполняющий колонку сорбент с большей скоростью за счет значительного давления на входе в хроматографическую колонку.

Высокоэффективная жидкостная хроматография является удобным способом разделения, препаративного выделения и проведения количественного и качественного анализа нелетучих термолабильных соединений как с малой, так и с большой молекулярной массой.

Основными узлами современного жидкостного хроматографа являются: насос высокого давления, дозатор, высокоэффективная колонка, детектор с регистрирующим устройством.

Современные жидкостные хроматографы могут быть снабжены микропроцессором и устройствами, с помощью которых можно автоматически производить ввод пробы, поддерживать условие хроматографического процесса по заданной программе, автоматически оптимизировать условия разделения, проводить расчет количественного состава анализируемой смеси по одной или нескольким программам и проводить качественный анализ.

Насос высокого давления (до 200-500 атм) обеспечивает подачу элюента в колонку с заданной постоянной скоростью. В некоторых микроколоночных хроматографах применяются насосы сравнительно низкого давления (до 10-20 атм).

Хроматографические колонки из нержавеющей стали (или из стекла) длиной 10-25 см с внутренним диаметром 0,3-0,8 см (чаще 0,4-0,5 см) заполняются адсорбентом с диаметром частиц 5-10 мкм сферической или неправильной формы с помощью суспензионного метода, что дает возможность получить более равномерную и плотную упаковку частиц сорбента в колонке. Заполнение колонки проводится при больших давлениях, чем рабочее давление в хроматографе. В микроколоночных хроматографах используются колонки меньшей длины и меньшего внутреннего диаметра (0,1-0,2 см и меньше).
1   ...   9   10   11   12   13   14   15   16   ...   42


написать администратору сайта