Опр. 10 Функция F(x) называется первообразной для функции f(x) на интервале X
Скачать 0.99 Mb.
|
Неопределённый интеграл.
Опр.10.1. Функция F(x) называется первообразной для функции f(x) на интервале X=(a,b) (конечном или бесконечном), если в каждой точке этого интервала f(x) является производной для F(x), т.е. . Из этого определения следует, что задача нахождения первообразной обратна задаче дифференцирования: по заданной функции f(x ) требуется найти функцию F(x), производная которой равна f(x). Первообразная определена неоднозначно: для функции первообразными будут и функция arctg x, и функция arctg x-10: . Для того, чтобы описать все множество первообразных функции f(x), рассмотрим Свойства первообразной.
Док-во. Так как функции F(x) и F1(x) - первообразные для f(x), то (по теор.8.1. условие постоянства дифференцируемой функции на интервале)
Из этих свойств следует, что если F(x) - некоторая первообразная функции f(x) на интервале X, то всё множество первообразных функции f(x) (т.е. функций, имеющих производную f(x) и дифференциал f(x) dx) на этом интервале описывается выражением F(x) + C, где C - произвольная постоянная. 2. Неопределённый интеграл и его свойства. Опр.10.2. Множество первообразных функции f(x) называется неопределённым интегралом от этой функции и обозначается символом . Как следует из изложенного выше, если F(x) - некоторая первообразная функции f(x), то, где C - произвольная постоянная. Функцию f(x) принято называть подынтегральной функцией, произведение f(x) dx - подынтегральным выражением. Свойства неопределённого интеграла, непосредственно следующие из определения:
Определенный интеграл 1. Определение. 11.1.1. Вычисление площади криволинейной трапеции. Пусть на отрезке [a,b] (b>a) задана непрерывная функция y = f(x) , принимающая на этом отрезке неотрицательные значения : при . Требуется определить площадь S криволинейной трапеции ABCD, ограниченной снизу отрезком [a,b], слева и справа - прямыми x = a и x = b, сверху – функцией y = f(x). Для решения этой задачи разделим произвольным образом основание AD фигуры точками x0 = a, x1 ,x2 , …, xn-1 = a, xn = b на n частей [x0 , x1], [x1 , x2], …, [xi-1 , xi], …, [xn-1 , xn]; символом будем обозначать длину i-го отрезка: . На каждом из отрезков [xi-1 , xi] выберем произвольную точку , найдём , вычислим произведение (это произведение равно площади прямоугольника Pi с основанием [xi-1 , xi] и высотой ) и просуммируем эти произведения по всем прямоугольникам. Полученную сумму обозначим S ступ: . Sступ равно площади ступенчатой фигуры, образованной прямоугольниками Pi , i = 1,2,…,n; на левом рисунке эта площадь заштрихована. Sступ не равна искомой площади S, она только даёт некоторое приближение к S. Для того, чтобы улучшить это приближение, будем увеличивать количество n отрезков таким образом, чтобы максимальная длина этих отрезков стремилась к нулю (на рисунке ступенчатые фигуры изображены при n = 7 (слева) и при n = 14 (справа)). При разница между Sступ и S будет тоже стремиться к нулю, т.е. . 11.1.2. Определение определённого интеграла. Пусть на отрезке [a,b] задана функция y = f(x). Разобьём отрезок [a,b] произвольным образом на n частей точками [x0 , x1], [x1 , x2], …, [xi-1 , xi], …, [xn-1 , xn]; длину i-го отрезка обозначим : ; максимальную из длин отрезков обозначим . На каждом из отрезков [xi-1 , xi] выберем произвольную точку и составим сумму . Сумма называется интегральной суммой. Если существует (конечный) предел последовательности интегральных сумм при , не зависящий ни от способа разбиения отрезка[a,b] на части [xi-1 , xi], ни от выбора точек , то функция f(x) называется интегрируемой по отрезку [a,b], а этот предел называется определённым интегралом от функции f(x) по отрезку [a,b] и обозначается . Функция f(x), как и в случае неопределённого интеграла, называется подынтегральной, числа a и b - соответственно, нижним и верхним пределами интегрирования. Кратко определение иногда записывают так: . В этом определении предполагается, что b> a. Для других случаев примем, тоже по определению: Если b=a, то ; если b<a, то . 11.1.3. Теорема существования определённого интеграла. Если функция f(x) непрерывна на отрезке [a,b], то она интегрируема по этому отрезку. Примем это утверждение без доказательства, поясним только его смысл. Интегрируемость функции означает существование конечного предела последовательности интегральных сумм, т.е. такого числа , что для любого найдётся такое число , что как только разбиение отрезка удовлетворяет неравенству , то, независимо от выбора точек выполняется неравенство. Требование непрерывности f(x) достаточно для интегрируемости, но не является необходимым. Интегрируемы функции, имеющие конечное или даже счётное число точек разрыва на [a,b] при условии их ограниченности (т.е. все точки разрыва должны быть точками разрыва первого рода). Неограниченная функция не может быть интегрируемой (идея доказательства этого утверждения: если f(x)неограничена на [a,b], то она неограничена на каком-либо [xi-1 , xi], т.е. на этом отрезке можно найти такую точку , что слагаемое , а следовательно, и вся интегральная сумма, будет больше любого наперед заданного числа). 11.1.4. Геометрический смысл определённого интеграла. Как следует из пункта 11.1.1, если f(x) >0 на отрезке [a,b], то равен площади криволинейной трапеции ABCD, ограниченной снизу отрезком [a,b], слева и справа - прямыми x = a и x = b, сверху – функцией y = f(x). 11.2. Свойства определённого интеграла.
3. Вычисление определённого интеграла. Формула Ньютона-Лейбница. 11.3.1. Интеграл с переменным верхним пределом. Значение определённого интеграла не зависит от того, какой буквой обозначена переменная интегрирования: (чтобы убедиться в этом, достаточно выписать интегральные суммы, они совпадают). В этом разделе переменную интегрирования будем обозначать буквой t, а буквой x обозначим верхний предел интегрирования. Будем считать, что верхний предел интеграла может меняться, т.е. что x - переменная, в результате интеграл будет функцией Ф(x) своего верхнего предела: . Легко доказать, что если f(t) интегрируема, то Ф(x) непрерывна, но для нас важнее следующая фундаментальная теорема: Теорема об интеграле с переменным верхним пределом. Если функция f(t) непрерывна в окрестности точки t = x, то в этой точке функция Ф(x) дифференцируема, и . Другими словами, производная определённого интеграла от непрерывной функции по верхнему пределу равна значению подынтегральной функции в этом пределе. Док-во. Дадим верхнему пределу x приращение . Тогда , где c - точка, лежащая между x и (существование такой точки утверждается теоремой о среднем; цифры над знаком равенства - номер применённого свойства определённого интеграла). . Устремим . При этом (c- точка, расположенная между x и ). Так как f(t) непрерывна в точке t = x, то . Следовательно, существует , и . Теорема доказана. Отметим первое важное следствие этой теоремы. По существу, мы доказали, что любая непрерывная функция f(x) имеет первообразную, и эта первообразная определяется формулой . Другим важным следствием этой теоремы является формула Ньютона-Лейбница, или основная формула интегрального исчисления. 11.3.2. Формула Ньютона-Лейбница. Если f(x) непрерывна на отрезке [a, b], и F(x) - некоторая первообразная функции , то . Док-во. Мы установили, что функция - первообразная непрерывной f(x). Так как F(x) - тоже первообразная, то Ф(x) = F(x) + C. Положим в этом равенстве x = a. Так как , то . В равенстве переобозначим переменные: для переменной интегрирования t вернёмся к обозначению x , верхний предел x обозначим b. Окончательно, . Разность в правой части формулы Ньютона-Лейбница обозначается специальным символом: (здесь читается как "подстановка от a до b"), поэтому формулу Ньютона-Лейбница обычно записывают так: . Пример применения формулы Ньютона-Лейбница: . 11.3.3. Формула интегрирования по частям для определённого интеграла. Если u(x), v(x) - непрерывно дифференцируемые функции, то . Док-во. Интегрируем равенство в пределах от a до b: . Функция в левом интеграле имеет первообразную uv, по формуле Ньютона-Лейбница , следовательно, , откуда и следует доказываемое равенство. Пример: . 11.3.4. Замена переменной в определённом интеграле. Теорема. Пусть функция
Тогда . |