Экзамен, который я обязательно сдам). Определение биологии как науки. Связь биологии с другими науками. Значение биологии для медицины. Фундаментальные свойства живого
Скачать 1.73 Mb.
|
35. Хромосомный уровень организации наследственного материала. Уровни упаковки хроматина. Понятие об эухроматине и гетерохроматине. https://foxford.ru/wiki/biologiya/kompaktizatsiya-dnk-struktura-hromatina 36. Геномный уровень организации наследственного материала. Особенности генома человека. Геном - это гаплоидный набор хромосом (одинарный). Геномный уровень организации наследственного материала, объединяющий всю совокупность хромосомных генов, является эволюционно сложившейся структурой, характеризующейся относительно большей стабильностью, нежели генный и хромосомный уровни. Результатом функционирования генома является формирование фенотипа целостного организма. В связи с этим фенотип организма нельзя представлять как простую совокупность признаков и свойств, это организм во всем многообразии его характеристик на всем протяжении индивидуального развития. Таким образом, поддержание постоянства организации наследственного материала на геномном уровне имеет первостепенное значение для обеспечения нормального развития, организма и воспроизведения у особи в первую очередь видовых характеристик. Мутационные изменения, реализующиеся на геномном уровне организации наследственного материала,— мутации регуляторных генов, обладающих широким плейотропным действием, количественные изменения доз генов, транслокации и транспозиции генетических единиц, влияющие на характер экспрессии генов, наконец, возможность включения в геном чужеродной информации при горизонтальном переносе нуклеотидных последовательностей. 37. Генетическая (генная) инженерия, ее задачи, методы, возможности, перспективы использования. В настоящее время в центр молекулярной генетики становятся методы генетической инженерии, с помощью которых осуществляется целенаправленное изменение генетических свойств организмов. Генетическая инженерия – область молекулярной биологии и генетики, которая ставит перед собой задачи конструирования генетических структур по ранее намеченному плану, создание организмов с новой генетической программой. Генно-инженерные исследования вносят уникальный вклад в изучение структурно-функциональной организации геномов различных организмов. Методология генной инженерии постоянно совершенствуется, и все больше исследователей используют ее при решении самых разных задач биологической науки. Возможности, открываемые генетической инженерией перед человечеством, как в области фундаментальной науки, так и во многих других областях, весьма велики и нередко даже революционны. Так, она позволяет осуществлять индустриальное массовое производство нужных белков, значительно облегчает технологические процессы для получения продуктов ферментации – энзимов и аминокислот, в будущем может применяться для улучшения растений и животных, а также для лечения наследственных болезней человека. Особенно большие возможности генетическая инженерия открывает перед медициной и фармацевтикой, поскольку ее применение может привести к коренным преобразованиям медицины. Многие болезни, для которых в настоящее время не существует адекватных методов диагностики и лечения (раковые, сердечнососудистые, вирусные и паразитные инфекции, нервные и умственные расстройства), с помощью генетической инженерии станут доступны и диагностике, и лечению. В основу генно-инженерных методов заложена способность ферментов рестриктаз расщеплять ДНК на отдельные нуклеотидные последовательности, которые могут быть использованы для встраивания их в гены бактериальных клеток с целью получения гибридных или химерных форм, эти гибридные формы состоят из собственной ДНК и дополнительно встроенных фрагментов несвойственной им ДНК. Поэтому методами генетической инженерии добиваются клонирования генов. Клонирование ДНК – это получение ее генетически идентичных колоний. Генетическая инженерия подразделяется на генную, геномную и хромосомную. Сущность первой (генной) состоит в целенаправленном использовании перестроек естественного генома, для изменения генетических характеристик известных вирусов и клеток. В качестве примера можно привести перемещение в вирусные геномы некоторых клеточных генов, придающих вирусам свойства онкогенности. Сущность геномной инженерии заключается в целенаправленной глубокой перестройке генома прокариот вплоть до создания новых видов. При геномной инженерии вносят большое количество дополнительной генетической информации и получают гибридный организм, который отличается от исходного по многим признакам. +Хромосомная инженерия – сеть генетической инженерии, объектами ее является хромосомы клеток высших и низших микроорганизмов (прокариоты, эукариоты), благодаря хромосомной инженерии стало возможным лечение наследственных заболеваний, селекция пород животных, различных видов растений. Возможности генной инженерии Родившись в начале 70-х годов, генетическая инженерия добилась сегодня больших успехов. Ее методы преобразуют клетки бактерий, дрожжей и млекопитающих в «фабрики» для масштабного производства любого белка. Это дает возможность детально анализировать структуру и функции белков и использовать их в качестве лекарственных средств. В настоящее время кишечная палочка (E. coli) стала поставщиком таких важных гормонов как инсулин и соматотропин. Ранее инсулин получали из клеток поджелудочной железы животных, поэтому стоимость его была очень высока. В 1978 году исследователи из компании «Genetec» впервые получили инсулин в специально сконструированном штамме кишечной палочки. Было показано, что он не содержит белков E. coli, эндотоксинов и других примесей, не дает побочных эффектов, как инсулин животных, а по биологической активности от него не отличается. Соматотропин – гормон роста человека. Недостаток этого гормона приводит к карликовости. Если вводить соматотропин в дозах 10 мг на кг веса три раза в неделю, то за год ребенок, страдающий от его недостатка, может подрасти на 6 см. Ранее его получали из трупного материала, из одного трупа: 4–6 мг соматотропина в пересчете на конечный фармацевтический препарат. Таким образом, доступные количества гормона были ограничены, кроме того, гормон, получаемый этим способом, был неоднороден и мог содержать медленно развивающиеся вирусы. Компания «Genetec» в 1980 году разработала технологию производства соматотропина с помощью бактерий, который был лишен перечисленных недостатков. В 1982 году гормон роста человека был получен в культуре E. coli и животных клеток в институте Пастера во Франции, а с 1984 года начато промышленное производство инсулина и в СССР. На технологии рекомбинантных ДНК основано получение высокоспецифичных ДНК-зондов, с помощью которых изучают экспрессию генов в тканях, локализацию генов в хромосомах, выявляют гены, обладающие родственными функциями (например, у человека и курицы). ДНК-зонды также используются в диагностике различных заболеваний. Технология рекомбинантных ДНК сделала возможным нетрадиционный подход «белок-ген», получивший название «обратная генетика». При таком подходе из клетки выделяют белок, клонируют ген этого белка, модифицируют его, создавая мутантный ген, кодирующий измененную форму белка. Полученный ген вводят в клетку. Если он экспрессируется, несущая его клетка и ее потомки будут синтезировать измененный белок. Таким образом, можно исправлять дефектные гены и лечить наследственные заболевания. Если гибридную ДНК ввести в оплодотворенное яйцеклетку, могут быть получены трансгенные организмы, экспрессирующие мутантный ген и передающие его потомками. Генетическая трансформация животных позволяет установить роль отдельных генов и их белковых продуктов, как в регуляции активности других генов, так и при различных патологических процессах. С помощью генетической инженерии созданы линии животных, устойчивых к вирусным заболеваниям, а также породы животных с полезными для человека признаками. Например, микроинъекция рекомбинантной ДНК, содержавшей ген соматотропина быка, в зиготу кролика позволила получить трансгенное животное с гиперпродукцией этого гормона. Сейчас даже трудно предсказать все возможности, которые будут реализованы в ближайшие несколько десятков лет. Задачи генной инженерии Основные направления генетической модификации организмов: – придание устойчивости к ядохимикатам (например, к определенным гербицидам); – придание устойчивости к вредителям и болезням (например, Bt-модификация); – повышение продуктивности (например, быстрый рост трансгенного лосося); – придание особых качеств (например, изменение химического состава). Методы генной инженерии Методы генной инженерии основаны на получении фрагментов исходной ДНК и их модификации. Для получения исходных фрагментов ДНК разных организмов используется несколько способов: – Получение фрагментов ДНК из природного материала путем разрезания исходной ДНК с помощью специфических нуклеаз (рестриктаз). – Прямой химический синтез ДНК, например, для создания зондов – Синтез комплементарной ДНК (кДНК) на матрице мРНК с использованием фермента обратной транскриптазы (ревертазы). Выделенные участки ДНК встраивают в векторы переноса ДНК. Векторы ДНК – это небольшие молекулы ДНК, способные проникать в другие клетки и реплицироваться в них. В состав вектора ДНК входит не менее трех групп генов: 1. Целевые гены, которые интересуют экспериментатора. 2. Гены, отвечающие за репликацию вектора, его интеграцию в ДНК клетки-хозяина и экспрессию требуемых генов. 3. Гены-маркеры (селективные, репортерные гены), по деятельности которых можно судить об успешности трансформации (например, гены устойчивости к антибиотикам или гены, отвечающие за синтез белков, светящихся в ультрафиолетовом свете). Для внедрения векторов в прокариотические или эукариотические клетки используют различные способы: 1. Биотрансформация. Используются векторы, способные сами проникать в клетки. Частным случаем биотрансформации является агробактериальная трансформация. 2. Микроинъекции. Используются, если клетки, подлежащие трансформации, достаточно крупные (например, икринки, пыльцевые трубки). 3. Биобаллистика (биолистика). Векторы «вбивают» в клетки с помощью специальных «пушек». В качестве векторов часто используют плазмиды (кольцевые молекулы ДНК прокариотических клеток), а также ДНК вирусов. У эукариот в качестве векторов используют мобильные генетические элементы – участки хромосом, способные образовывать множество копий и встраиваться в другие хромосомы. В составе одного вектора можно комбинировать различные фрагменты ДНК (различные гены). Вновь образованные фрагменты ДНК называют рекомбинантными. Векторы переноса ДНК вместе с внедренными фрагментами ДНК различными способами вводят в прокариотические или эукариотические клетки и получают трансгенные клетки. В ходе размножения трансгенных клеток происходит клонирование требуемых фрагментов ДНК, в частности, отдельных генов. Клонированные гены эукариот подвергают различным модификациям (например, добавляют перед ними определенные промоторы) и внедряют в клетки-продуценты. Основная проблема состоит в том, чтобы чужеродные гены экспрессировались постоянно, то есть должен происходить синтез необходимых веществ без ущерба для клетки–хозяина. Практические достижения современной генной инженерии заключаются в следующем: – Созданы банки генов, или клонотеки, представляющие собой коллекции клонов бактерий. Каждый из этих клонов содержит фрагменты ДНК определенного организма (дрозофилы, человека и других). – На основе трансформированных штаммов вирусов, бактерий и дрожжей осуществляется промышленное производство инсулина, интерферона, гормональных препаратов. На стадии испытаний находится производство белков, позволяющих сохранить свертываемость крови при гемофилии, и других лекарственных препаратов. +– Созданы трансгенные высшие организмы (многие растения, некоторые рыбы и млекопитающие) в клетках которых успешно функционируют гены совершенно других организмов. Широко известны генетически защищенные генно-модифицированные растения (ГМР), устойчивые к высоких дозам определенных гербицидов, а также Bt-модифицированные растения, устойчивые к вредителям. 38. Закономерности наследования, установленные Менделем. Взаимодействие аллельных генов. Менделирующие признаки у человека. Закономерности наследования, установленные Г. Менделем Выдающийся вклад Г. Менделя в науку состоит в экспериментальном доказательстве наличия единиц наследственности (наследственных задатков, генов) и описании их важнейших свойств — дискретности, стабильности, специфичности, аллельного состояния. йц Эти положения отражают общие принципы организации наследственного материала: I) дискретное определение развития наследуемых признаков; 2) относительная стабильность наследственных единиц; 3) аллельное состояние наследственных единиц. Из этих принципов вытекают правила (законы) наследования, сформулированные Г. Менделем: 1) единообразие признака у гибридов первого поколения; 2) расщепление альтернативных вариантов признака среди особей второго поколения; 3) независимое комбинирование признаков родителей в потомках. Генетические закономерности, впервые открытые Г. Менделем, описывают правила независимого наследования, в основе которого лежит наличие дискретных единиц наследственности генов. Основные понятия генетики: При изучении закономерностей наследования обычно скрещивают особи, отличающиеся друг от друга альтернативными признаками, например желтый и зеленый цвет, гладкая и морщинистая поверхность у горошин. Аллельные гены – гены, определяющие развитие альтернативных признаков. Они располагаются в одинаковых локусах гомологичных хромосом. Локус – место локализации гена в хромосоме. Альтернативный признак и соответствующий ему ген, проявляющийся у гибридов первого поколения, называется доминантным, а не проявляющийся – рецессивным, т. е.: Доминантность – это способность подавлять одним аллелем действие другого в гетерозиготном состоянии. Аллель – форма существования (проявления) гена. Если в обеих гомологичных хромосомах находятся одинаковые аллельные гены, такой организм называется гомозиготным, так как он образует один тип гамет и не дает расщепление при скрещивании с себе подобным. Если в гомологичных хромосомах локализованы разные гены одной аллельной пары, то такой организм называется гетерозиготным по данному признаку. Генотип - совокупность всех генов организма. Генотип представляет собой взаимодействующие друг с другом и влияющие друг на друга совокупности генов. Каждый ген испытывает на себе воздействие других генов генотипа и сам оказывает на них влияние, поэтому один и тот же ген в разных генотипах может проявляться по-разному. Несмотря на то, что уже многое известно о хромосомах и структуре ДНК, дать определение гена очень трудно, пока удалось сформулировать только три возможных определения гена: а) ген как единица рекомбинации. На основании своих работ по построению хромосомных карт дрозофилы Морган постулировал, что ген - это наименьший участок хромосомы, который может быть отделен от примыкающих к нему участков в результате кроссинговера. Согласно этому определению, ген представляет собой крупную единицу, специфическую область хромосомы, определяющую тот или иной признак организма; б) ген как единица мутирования. В результате изучения природы мутаций было установлено, что изменения признаков возникают вследствие случайных спонтанных изменений в структуре хромосомы, в последовательности оснований или даже в одном основании. В этом смысле можно было сказать, что ген - это одна пара комплиментарных оснований в нуклеотидной последовательности ДНК, т.е. наименьший участок хромосомы, способный претерпеть мутацию. в) ген как единица функции. Поскольку было известно, что от генов зависят структурные, физиологические и биохимические признаки организмов, было предложено определять ген как наименьший участок хромосомы, обусловливающий синтез определенного продукта. Фенотип – совокупность всех свойств и признаков организма. Фенотип развивается на базе определенного генотипа в результате взаимодействия организма с условиями окружающей среды. Организмы, имеющие одинаковый генотип, могут отличаться друг от друга в зависимости от условий развития и существования. Фен, признак или свойство организма – это единица морфологической, физиологической, биохимической дискретности, позволяющей отличать один организм от другого. Геном – совокупность численности и формы хромосом и содержащихся в них генов для данного вида. Генофонд – это совокупность всех аллелей генов, содержащихся в популяции. 39. Множественные аллели и полигенное наследование на примере человека. Наследование групп крови и резус-фактора. Присутствие в генофонде вида одновременно различных аллелей гена называют множественным аллелизмом. У человека множественный аллелизм свойственен многими генам. Так, 3 аллели гена I определяют групповую принадлежность крови по системе АВО (IA, IB, IO), 2-ая аллели имеют ген, обуславливающий резус-принадлежность. Более 100 аллелей насчитывают гены α и β — полипептидов гемоглобина. Причиной множественного аллелизма является случайнее изменения структуры гена (мутации), сохраняемые в процессе естественного отбора в генофонде популяции. Кумулятивная полимерия. Значительная часть признаков у эукариот, наследуемых полигенно, находится под контролем не двух-трех, а большего числа генов (их количество пока еще трудно определить). При моногенном типе наследования в моногибридном скрещивании один ген проявляется в двух альтернативных состояниях без переходных форм. Такие признаки относятся к качественным, при их анализе, как правило, не проводится никаких измерений. При неаллельном взаимодействии двух несцепленных генов даже при сохранении менделевского отношения 9:3:3:1 фенотип первого поколения гибридов зависит от действия обоих генов. Однако наследование качественных признаков может определяться взаимодействием трех и более генов. При этом каждый из этих генов имеет свою долю влияния на развитие признака. Примером может служить наследование красной и белой окраски зерен пшеницы в опытах шведского генетика Нильсона-Эле. Результаты этих опытов были опубликованы в 1909 г. При скрещивании сорта пшеницы, зерна которой имели темно-красную окраску, с сортом, имеющим белые зерна, гибриды первого поколения имели красную окраску более светлых тонов. Во втором поколении получилось такое соотношение по фенотипу: на 63 окрашенных зерна с различными оттенками красного цвета приходилась 1 белое зерно (неокрашенное). Эти результаты были объяснены Нильсоном-Эле следующим образом. Темно-красная окраска зерен пшеницы обусловлена действием трех пар доминантных генов, а белая - трех пар рецессивных, при этом по мере увеличения числа доминантных генов окраска становится более интенсивной. Обозначим доминантные аллели трех генов, локализованных в разных хромосомах, прописными буквами А1 А2 А3 а рецессивные - строчными а1 а1 а3, тогда генотипы исходных форм будут: А1А1 А2А2 А3А3 x а1я1 а2а2 a33a. Окраска зерен у гибридов первого поколения A1a1 A2a2 A3a3 при наличии трех доминантных аллелей будет промежуточной светло-красной. При скрещивании гибридов первого поколения A1a1 A2a2 A3a3 x A1a1 A2a2 A3a3 у каждого из гибридов образуется по 8 типов гамет, поэтому во втором поколении ожидается расщепление в 64-х долях (8 х 8). Среди 63/64 растений с окрашенными зернами интенсивность окраски усиливается по мере увеличения числа доминантных аллелей различных генов в генотипе. Видимо, каждый доминантный ген способствует увеличению количества синтезированного пигмента, и в этом смысле такой признак можно отнести к количественным. |