лекция. Лекции+6-7. Определение. Дифференциальным уравнением порядка
Скачать 0.66 Mb.
|
Линейные неоднородные дифференциальные уравнения с постояннымикоэффициентами. Уравнения с правой частью специального вида. Представляется возможным представить вид частного решения в зависимости от вида правой части неоднородного уравнения. Различают следующие случаи: I. Правая часть линейного неоднородного дифференциального уравнения имеет вид: где - многочлен степени m. Тогда частное решение ищется в виде: Здесь Q(x)- многочлен той же степени, что и P(x), но с неопределенными коэффициентами, а r – число, показывающее сколько раз число a является корнем характеристического уравнения для соответствующего линейного однородного дифференциального уравнения. Пример. Решить уравнение . Решим соответствующее однородное уравнение: Теперь найдем частное решение исходного неоднородного уравнения. Сопоставим правую часть уравнения с видом правой части, рассмотренным выше. Частное решение ищем в виде: , где Т.е. Теперь определим неизвестные коэффициенты А и В. Подставим частное решение в общем виде в исходное неоднородное дифференциальное уравнение. Итого, частное решение: Т огда общее решение линейного неоднородного дифференциального уравнения: II. Правая часть линейного неоднородного дифференциального уравнения имеет вид: Здесь Р1(х) и Р2(х) – многочлены степени m1 и m2 соответственно. Тогда частное решение неоднородного уравнения будет иметь вид: где число r показывает сколько раз число является корнем характеристического уравнения для соответствующего однородного уравнения, а Q1(x) иQ2(x) – многочлены степени не выше m, где m- большая из степеней m1 и m2. Заметим, что если правая часть уравнения является комбинацией выражений рассмотренного выше вида, то решение находится как комбинация решений вспомогательных уравнений, каждое из которых имеет правую часть, соответствующую выражению, входящему в комбинацию. Т.е. если уравнение имеет вид: , то частное решение этого уравнения будет где у1и у2 – частные решения вспомогательных уравнений и Для иллюстрации решим рассмотренный выше пример другим способом. Пример. Решить уравнение Правую часть дифференциального уравнения представим в виде суммы двух функций f1(x) + f2(x) = x + (-sinx). Составим и решим характеристическое уравнение: Для функции f1(x) решение ищем в виде . Получаем: Т.е. Итого: Для функции f2(x) решение ищем в виде: . Анализируя функцию f2(x), получаем: Таким образом, Итого: Т.е. искомое частное решение имеет вид: Общее решение неоднородного дифференциального уравнения: Рассмотрим примеры применения описанных методов. Пример. Решить уравнение Составим характеристическое уравнение для соответствующего линейного однородного дифференциального уравнения: Общее решение однородного уравнения: Теперь найдем частное решение неоднородного уравнения в виде: Воспользуемся методом неопределенных коэффициентов. Подставляя в исходное уравнение, получаем: Ч астное решение имеет вид: Общее решение линейного неоднородного уравнения: Пример. Решить уравнение Характеристическое уравнение: Общее решение однородного уравнения: Частное решение неоднородного уравнения: . Находим производные и подставляем их в исходное неоднородное уравнение: П олучаем общее решение неоднородного дифференциального уравнения: Нормальные системы обыкновенных дифференциальных уравнений. Определение. Совокупность соотношений вида: где х- независимая переменная, у1, у2,…,уn – искомые функции, называется системой дифференциальных уравнений первого порядка. Определение. Система дифференциальных уравнений первого порядка, разрешенных относительно производных от неизвестных функций называется нормальной системой дифференциальных уравнений. Такая система имеет вид: (1) Для примера можно сказать, что график решения системы двух дифференциальных уравнений представляет собой интегральную кривую в трехмерном пространстве. Теорема. (Теорема Коши). Если в некоторой области (n-1) –мерного пространства функции … непрерывны и имеют непрерывные частные производные по , то для любой точки этой области существует единственное решение системы дифференциальных уравнений вида (1), определенное в некоторой окрестности точки х0 и удовлетворяющее начальным условиям Определение. Общим решением системы дифференциальных уравнений вида (1) будет совокупность функций , , … , которые при подстановке в систему (1) обращают ее в тождество. |