|
Математика. Определители. Свойства. Вычисление. Определитель или детерминант
рвый замечательный предел
Доказательство
Рассмотрим односторонние пределы и и докажем, что они равны 1.
Пусть . Отложим этот угол на единичной окружности (R = 1).
Точка K — точка пересечения луча с окружностью, а точка L — с касательной к единичной окружности в точке (1;0). Точка H — проекция точки K на ось OX.
Очевидно, что:
(1)
(где SsectOKA — площадь сектора OKA)
(из : | LA | = tgx)
Подставляя в (1), получим:
Так как при :
Умножаем на sinx:
Перейдём к пределу:
Найдём левый односторонний предел:
Правый и левый односторонний пределы существуют и равны 1, а значит и сам предел равен 1.
Следствия
26. 2-ойзамечательный предел. Второй замечательный предел:
или
Доказательство второго замечательного предела:
Зная, что второй замечательный предел верен для натуральных значений x, докажем второй замечательный предел для вещественных x, то есть докажем, что . Рассмотрим два случая:
1. Пусть . Каждое значение x заключено между двумя положительными целыми числами: , где — это целая часть x.
Отсюда следует: , поэтому
.
Если , то . Поэтому, согласно пределу , имеем:
.
По признаку (о пределе промежуточной функции) существования пределов .
2. Пусть . Сделаем подстановку − x = t, тогда
.
Из двух этих случаев вытекает, что для вещественного x.
Следствия
для 0 \,\!" ALIGN=BOTTOM WIDTH=46 HEIGHT=14 BORDER=0>,
27. Производная функции. Геометрический и физический смысл производной. Произво́дная (функции в точке) — основное понятие дифференциального исчисления, характеризующее скорость изменения функции (в данной точке). Определяется как предел отношения приращения функции к приращению ее аргумента при стремлении приращения аргумента к нулю, если такой предел существует. Функцию, имеющую конечную производную (в некоторой точке), называют дифференцируемой (в данной точке). Процесс вычисления производной называется дифференци́рованием. Обратный процесс — интегрирование. Пусть в некоторой окрестности точки определена функция Производной функции f в точке x0 называется предел, если он существует,
[править] Общепринятые обозначения производной функции y = f(x) в точке x0
Заметим, что последнее обычно обозначает производную по времени
Геометрический смысл производной. На графике функции выбирается абсцисса x0 и вычисляется соответствующая ордината f(x0). В окрестности точки x0 выбирается произвольная точка x. Через соответствующие точки на графике функции F проводится секущая (первая светло-серая линия C5). Расстояние Δx = x — x0 устремляется к нулю, в результате секущая переходит в касательную (постепенно темнеющие линии C5 — C1). Тангенс угла α наклона этой касательной — и есть производная в точке x0.
Основная статья: Касательная прямая
Если функция имеет конечную производную в точке x0, то в окрестности U(x0) её можно приблизить линейной функцией
Функция fl называется касательной к f в точке x0. Число является угловым коэффициентом или тангенсом угла наклона касательной прямой.
[править] Скорость изменения функции Пусть s = s(t) — закон прямолинейного движения. Тогда v(t0) = s'(t0) выражает мгновенную скорость движения в момент времени t0. Вторая производная a(t0) = s''(t0) выражает мгновенное ускорение в момент времени t0.
Вообще производная функции y = f(x) в точке x0 выражает скорость изменения функции в точке x0, то есть скорость протекания процесса, описанного зависимостью y = f(x).
28. Правила дифференцирования функций. Таблица производных основных функций.
(частный случай формулы Лейбница)
— Правило дифференцирования сложной функции
|
|
|