Раздел 3. Организм как биологическая система
Скачать 18.71 Mb.
|
Раздел 3. Организм как биологическая система. 3.1. Разнообразие организмов: одноклеточные и многоклеточные; автотрофы (хемотрофы, фототрофы), гетеротрофы (сапротрофы, паразиты, симбионты). Вирусы – неклеточные формы. Заболевание СПИД и ВИЧ-инфекция. Меры профилактики распространения вирусных заболеваний. 3.2. Воспроизведение организмов, его значение. Способы размножения, сходство и отличие полового и бесполого размножения. Использование полового и бесполого размножения в практической деятельности человека. Роль мейоза и оплодотворения в обеспечении постоянства числа хромосом в поколениях. Применение искусственного оплодотворения у растений и животных. 3.3. Онтогенез и присущие ему закономерности. Специализация клеток, образование тканей, органов. Эмбриональное и постэмбриональное развитие организмов. Жизненные циклы и чередование поколений. Причины нарушения развития организмов. 3.4. Генетика, ее задачи. Наследственность и изменчивость – свойства организмов. Основные генетические понятия. 3.5. Закономерности наследственности, их цитологические основы. Моно– и дигибридное скрещивание. Закономерности наследования, установленные Г. Менделем. Сцепленное наследование признаков, нарушение сцепления генов. Законы Т. Моргана. Хромосомная теория наследственности. Генетика пола. Наследование признаков, сцепленных с полом. Генотип как целостная система. Развитие знаний о генотипе. Геном человека. Взаимодействие генов. Решение генетических задач. Составление схем скрещивания. Законы Г. Менделя и их цитологические основы. 3.6. Изменчивость признаков у организмов: модификационная, мутационная, комбинативная. Виды мутаций и их причины. Значение изменчивости в жизни организмов и в эволюции. Норма реакции. 3.6.1. Изменчивость, ее виды и биологическое значение. 3.7. Вредное влияние мутагенов, алкоголя, наркотиков, никотина на генетический аппарат клетки. Защита среды от загрязнения мутагенами. Выявление источников мутагенов в окружающей среде (косвенно) и оценка возможных последствий их влияния на собственный организм. Наследственные болезни человека, их причины, профилактика. 3.7.1. Мутагены, мутагенез. 3.8. Селекция, ее задачи и практическое значение. Учение Н.И. Вавилова о центрах многообразия и происхождения культурных растений. Закон гомологических рядов в наследственной изменчивости. Методы выведения новых сортов растений, пород животных, штаммов микроорганизмов. Значение генетики для селекции. Биологические основы выращивания культурных растений и домашних животных. 3.8.1. Генетика и селекция. 3.8.2. Методы работы И.В. Мичурина. 3.8.3. Центры происхождения культурных растений. 3.9. Биотехнология, клеточная и генная инженерия, клонирование. Роль клеточной теории в становлении и развитии биотехнологии. Значение биотехнологии для развития селекции, сельского хозяйства, микробиологической промышленности, сохранения генофонда планеты. Этические аспекты развития некоторых исследований в биотехнологии (клонирование человека, направленные изменения генома). 3.9.1. Клеточная и генная инженерия. Биотехнология. 3.1. Разнообразие организмов: одноклеточные и многоклеточные; автотрофы (хемотрофы, фототрофы), гетеротрофы (сапротрофы, паразиты, симбионты). Вирусы – неклеточные формы. Разнообразие организмов: одноклеточные и многоклеточные; автотрофы, гетеротрофы. Одноклеточные и многоклеточные организмы Необычайное разнообразие живых существ на планете вынуждает находить различные критерии для их классификации. Так, их относят к клеточным и неклеточным формам жизни, поскольку клетки являются единицей строения почти всех известных организмов — растений, животных, грибов и бактерий, тогда как вирусы являются неклеточными формами. В зависимости от количества клеток, входящих в состав организма, и степени их взаимодействия выделяют одноклеточные, колониальные и многоклеточные организмы. Несмотря на то, что все клетки сходны морфологически и способны осуществлять обычные функции клетки (обмен веществ, поддержание гомеостаза, развитие и др.), клетки одноклеточных организмов выполняют функции целостного организма. Деление клетки у одноклеточных влечет за собой увеличение количества особей, а в их жизненном цикле отсутствуют многоклеточные стадии. В целом у одноклеточных организмов совпадают клеточный и организменный уровни организации. Одноклеточными является подавляющее большинство бактерий, часть животных (простейшие), растений (некоторые водоросли) и грибов. Некоторые систематики даже предлагают выделить одноклеточные организмы в особое царство — протистов. Колониальными называют организмы, у которых в процессе бесполого размножения дочерние особи остаются соединенными с материнским организмом, образуя более или менее сложное объединение — колонию. Кроме колоний многоклеточных организмов, таких как коралловые полипы, имеются и колонии одноклеточных, в частности водоросли пандорина и эвдорина. Колониальные организмы, по-видимому, были промежуточным звеном в процессе возникновения многоклеточных. Многоклеточные организмы, вне всякого сомнения, обладают более высоким уровнем организации, чем одноклеточные, поскольку их тело образовано множеством клеток. В отличие от колониальных, которые также могут иметь более одной клетки, у многоклеточных организмов клетки специализируются на выполнении различных функций, что отражается и в их строении. Платой за эту специализацию является утрата их клетками способности к самостоятельному существованию, а зачастую и к воспроизведению себе подобных. Деление отдельной клетки приводит к росту многоклеточного организма, но не к его размножению. Онтогенез многоклеточных характеризуется процессом дробления оплодотворенной яйцеклетки на множество клеток-бластомеров, из которых в дальнейшем формируется организм с дифференцированными тканями и органами. Многоклеточные организмы, как правило, крупнее одноклеточных. Увеличение размеров тела по отношению к их поверхности способствовало усложнению и совершенствованию процессов обмена, формированию внутренней среды и, в конечном итоге, обеспечило им большую устойчивость к воздействиям окружающей среды (гомеостаз). Таким образом, многоклеточные обладают рядом преимуществ в организации по сравнению с одноклеточными и представляют собой качественный скачок в процессе эволюции. Многоклеточными являются немногие бактерии, большинство растений, животных и грибов. Автотрофы и гетеротрофы По способу питания все организмы делятся на автотрофов и гетеротрофов. Автотрофы способны самостоятельно синтезировать органические вещества из неорганических, а гетеротрофы используют исключительно готовые органические вещества. Часть автотрофов может использовать для синтеза органических соединений энергию света — такие организмы называются фотоавтотрофами, они способны осуществлять фотосинтез. Фото-автотрофами являются растения и часть бактерий. К ним тесно примыкают хемоавтотрофы, которые извлекают энергию путем окисления неорганических соединений в процессе хемосинтеза — это некоторые бактерии. К гетеротрофам относятся как животные, так и грибы, бактерии и даже лишенные хлорофилла растения. Среди гетеротрофов имеются паразиты, сапротрофы, симбионты, хищники и т. д. Паразиты — это организмы, использующие другие организмы (хозяев) в качестве среды обитания и источника питания. Характерными представителями этой группы гетеротрофов являются черви-паразиты кишечника человека — бычий цепень, острица и др. Сапротрофами называют гетеротрофные организмы, осуществляющие питание органическими остатками. Они играют важную роль в круговороте веществ в природе, поскольку обеспечивают завершение существования органических веществ в природе, разлагая их до неорганических. Тем самым сапротрофы участвуют в процессах почвообразования, очистки вод и т. п. К сапротро-фам относятся многие грибы и бактерии, а также некоторые растения и животные. Симбионтами называют разноименные организмы, сосуществующие и взаимодействующие на различной основе. В широком смысле симбиозом называют не только взаимовыгодное сосуществование (мутуализм), как у человека с его бактериальной микрофлорой кишечника, но и негативное действие со стороны одного из партнеров — паразитизм. Вирусы — неклеточные формы жизни Характеристика вирусов Наряду с клеточной формой жизни существуют также и неклеточные ее формы — вирусы, вироиды и прионы. Вирусами (от лат. вира — яд) называют мельчайшие живые объекты, неспособные к проявлению каких-либо признаков жизни вне клеток. Факт их существования был доказан еще в 1892 году русским ученым Д. И. Ивановским, установившим, что болезнь растений табака — так называемая табачная мозаика — вызывается необычным возбудителем, который проходит через бактериальные фильтры (рис. 3.1), однако только в 1917 году Ф. д'Эррель выделил первый вирус — бактериофаг. Вирусы изучает наука вирусология (от лат. вира — яд и греч. логос — слово, наука). Вирусы существуют в двух формах: покоящейся, или внеклеточной, и воспроизводящейся, или внутриклеточной. Свободноживущих вирусов не существует, все они внутриклеточные паразиты на генетическом уровне. В наше время известно уже около 1000 вирусов, которые классифицируют по объектам поражения, форме и другим признакам, однако наиболее распространенной является классификация по особенностям химического состава и строения вирусов. Особенности объектов поражения предопределяют подразделение вирусов на две большие группы: собственно вирусы и бактериофаги. Первые являются паразитами эукариотических клеток (животных, растений и грибов), а вторые — только клеток бактерий. В отличие от клеточных организмов, вирусы состоят только из органических веществ — в основном нуклеиновых кислот и белка, однако часть вирусов содержит также липиды и углеводы. Все вирусы условно делят на простые и сложные. Простые вирусы состоят из нуклеиновой кислоты и белковой оболочки — капсида. Капсид не монолитен, он собран из субъединиц белка — капсомеров. У сложных вирусов капсид покрыт липопротеиновой мембраной — су-перкапсидом, в состав которого входят также гликопротеины и неструктурные белки-ферменты. Наиболее сложное строение имеют вирусы бактерий — бактериофаги (от греч. бактерион — палочка и фагос — пожиратель), у которых выделяют головку и отросток, или «хвост». Головка бактериофага образована белковым капсидом и заключенной в нее нуклеиновой кислотой. В хвосте различают белковый чехол и спрятанный внутри него полый стержень. В нижней части стержня имеется специальная пластинка с шипами и нитями, ответственными за взаимодействие бактериофага с поверхностью клетки. В отличие от клеточных форм жизни, у которых имеется и ДНК, и РНК, в вирусах присутствует только один вид нуклеиновой кислоты (либо ДНК, либо РНК), поэтому их делят на ДНК-Вирусы оспы, простого герпеса, аденовирусы, некоторые вирусы гепатита и бактериофаги) и РНК-содержащие вирусы (вирусы табачной мозаики, ВИЧ, энцефалита, кори, краснухи, бешенства, гриппа, остальные вирусы гепатита, бактериофаги и др.). У одних вирусов ДНК может быть представлена одноцепочечной молекулой, а РНК — двухцепочечной. Так как вирусы лишены органоидов движения, заражение происходит при непосредственном контакте вируса с клеткой. В основном это происходит воздушно-капельным путем (грипп), через пищеварительную систему (гепатиты), кровь (ВИЧ) или переносчика (вирус энцефалита). Непосредственно в клетку вирусы могут попадать случайно, с жидкостью, поглощаемой путем пиноцитоза, однако чаще их проникновению предшествует контакт с мембраной клетки-хозя-ина, в результате которого нуклеиновая кислота вируса или вся вирусная частица оказывается в цитоплазме. Большинство вирусов проникает не в любую клетку организма-хозяина, а в строго определенную, например, вирусы гепатита поражают клетки печени, а вирусы гриппа — клетки слизистой оболочки верхних дыхательных путей, так как они способны взаимодействовать со специфическими белками-рецепторами на поверхности мембраны клетки-хозяина, которые отсутствуют в других клетках. В связи с тем, что у растений, бактерий и грибов клетки имеют прочные клеточные стенки, у вирусов, поражающих эти организмы, сформировались соответствующие приспособления к проникновению. Так, бактериофаги после взаимодействия с поверхностью клетки-хозяина «прокалывают» ее своим стержнем и вводят в цитоплазму клетки-хозяина нуклеиновую кислоту (рис. 3.2). У грибов заражение происходит в основном при повреждении клеточных стенок, у растений возможен как вышеупомянутый путь, так и проникновение вируса по плазмодесмам. После проникновения в клетку происходит «раздевание» вируса, то есть утрата капсида. Дальнейшие события зависят от характера нуклеиновой кислоты вируса: ДНК-содержащие вирусы встраивают свою ДНК в геном клетки-хозяина (бактериофаги), а на РНК либо сначала синтезируется ДНК, которая затем встраивается в геном клетки-хозяина (ВИЧ), либо на ней может непосредственно происходить синтез белка (вирус гриппа). Воспроизведение нуклеиновой кислоты вируса и синтез белков капсида с использованием белоксинтезирующего аппарата клетки являются обязательными компонентами вирусной инфекции, после чего происходят самосборка вирусных частиц и их выход из клетки. Вирусные частицы в одних случаях покидают клетку, постепенно отпочковываясь от нее, а в других случаях происходит микровзрыв, сопровождающийся гибелью клетки. Вирусы не только угнетают синтез собственных макромолекул в клетке, но и способны вызывать повреждение клеточных структур, особенно во время массового выхода из клетки. Это приводит, например, к массовой гибели промышленных культур молочнокислых бактерий в случае поражения некоторыми бактериофагами, нарушения иммунитета вследствие уничтожения ВИЧ Т4-лимфоцитов, представляющих собой одно из центральных звеньев защитных сил организма, к многочисленным кровоизлияниям и гибели человека в результате заражения вирусом Эбола, к перерождению клетки и образованию раковой опухоли и т. д. Несмотря на то, что проникшие в клетку вирусы часто быстро подавляют ее системы репарации и вызывают гибель, вероятен также и иной сценарий развития событий — активация защитных сил организма, которая связана с синтезом противовирусных белков, например интерферона и иммуноглобулинов. При этом размножение вируса прерывается, новые вирусные частицы не образуются, а остатки вируса выводятся из клетки. Происхождение вирусов не совсем ясно, однако полагают, что вирусы и бактериофаги — это обособившиеся генетические элементы клеток (например, плазмиды бактерий), которые эволюционировали вместе с клеточными формами жизни. Существуют также гипотезы упрощения про-кариотических организмов вследствие паразитирования, доклеточного происхождения вирусов и занесения их из космоса. Вирусы вызывают многочисленные заболевания человека, животных и растений. У растений это мозаичность табака и тюльпанов, у человека — грипп, краснуха, корь, СПИД и др. В истории человечества вирусы черной оспы, «испанки», а теперь и ВИЧ унесли жизни сотен миллионов человек. Однако инфицирование способно и повышать устойчивость организма к разнообразным возбудителям заболеваний (иммунитет), и таким образом способствовать их эволюционному прогрессу. Кроме того, вирусы способны «прихватывать» части генетической информации клетки-хозяина и переносить их следующей жертве, обеспечивая тем самым так называемый горизонтальный перенос генов, образование мутаций и, в конце концов, поставку материала для процесса эволюции. В наше время вирусы широко используют в изучении строения и функций генетического аппарата, а также принципов и механизмов реализации наследственной информации, они применяются как инструмент генетической инженерии и биологической борьбы с возбудителями некоторых заболеваний растений, грибов, животных и человека. Заболевание СПИД и ВИЧ-инфекция ВИЧ (вирус иммунодефицита человека) был обнаружен только в начале 80-х годов XX века, однако скорость распространения вызываемого им заболевания и невозможность излечения на данном этапе развития медицины заставляют уделять ему повышенное внимание. В 2008 году Ф. Барре-Синусси и Л. Монтанье за исследование ВИЧ была присуждена Нобелевская премия в области физиологии и медицины. ВИЧ — сложный РНК-содержащий вирус, который поражает главным образом Т4-лимфоциты, координирующие работу всей иммунной системы (рис. 3.3). На РНК вируса при помощи фермента РНК-зависимой ДНК-полимеразы (обратной транскриптазы) синтезируется ДНК, которая встраивается в геном клетки-хозяина, превращается в провирус и «затаивается» на неопределенное время. Впоследствии с этого участка ДНК начинается считывание информации о вирусной РНК и белках, которые собираются в вирусные частицы и практически одновременно покидают ее, обрекая на гибель. Вирусные частицы поражают все новые клетки и приводят к снижению иммунитета. ВИЧ-инфекция имеет несколько стадий, при этом длительный период человек может быть носителем заболевания и заражать других людей, однако сколько бы ни длился этот период, все равно наступает последняя стадия, которая называется синдромом приобретенного иммунодефицита, или СПИДом. Заболевание характеризуется снижением, а затем и полной потерей иммунитета организма ко всем возбудителям заболеваний. Признаками СПИДа являются хроническое поражение слизистых оболочек полости рта и кожи возбудителями вирусных и грибковых заболеваний (герпесом, дрожжевыми грибами и т. д.), тяжелая пневмония и другие СПИД-ассоциированные заболевания. ВИЧ передается половым путем, через кровь и другие жидкости организма, но не передается через рукопожатия и бытовые предметы. В первое время в нашей стране инфицирование ВИЧ чаще было сопряжено с неразборчивыми^ половыми контактами, особенно гомосексуальными, инъекционной наркоманией, переливанием зараженной крови, в настоящее же время эпидемия вышла за пределы групп риска и быстро распространяется на другие категории населения. Основными средствами профилактики распространения ВИЧ-инфекции являются использование презервативов, разборчивость в половых связях и отказ от употребления наркотиков. |