Раздел 3. Организм как биологическая система
Скачать 18.71 Mb.
|
Внешнее и внутреннее оплодотворение У животных различают внешнее и внутреннее оплодотворения. При внешнем оплодотворении женские и мужские половые клетки выводятся наружу, где и происходит процесс их слияния, как, например, у кольчатых червей, двустворчатых моллюсков, бесчерепных, большинства рыб и многих земноводных. Несмотря на то, что оно не требует сближения размножающихся особей, у подвижных животных возможно не только их сближение, но и скопление, как при нересте рыб. Внутреннее оплодотворение связано с введением мужских половых продуктов в половые пути самки, и наружу выводится уже оплодотворенная яйцеклетка. Она зачастую имеет плотные оболочки, препятствующие ее повреждению и проникновению следующих сперматозоидов. Внутреннее оплодотворение характерно для подавляющего большинства наземных животных, например, для плоских и круглых червей, многих членистоногих и брюхоногих моллюсков, пресмыкающихся, птиц и млекопитающих, а также для ряда земноводных. Оно встречается и у некоторых водных животных, в том числе у головоногих моллюсков и хрящевых рыб. Существует и промежуточный тип оплодотворения — наружно-внутренний, при котором самка захватывает половые продукты, специально оставленные самцом на каком-либо субстрате, как это происходит у некоторых членистоногих и хвостатых земноводных. Наружно-внутреннее оплодотворение может рассматриваться как переходное от внешнего к внутреннему. Как внешнее, так и внутреннее оплодотворения имеют свои преимущества и недостатки. Так, при внешнем оплодотворении половые клетки выделяются в воду или воздух, вследствие чего подавляющее большинство их гибнет. Однако эта разновидность оплодотворения обеспечивает существование полового размножения у таких прикрепленных и малоподвижных животных, как двустворчатые моллюски и бесчерепные. При внутреннем оплодотворении потери гамет, безусловно, гораздо меньше, однако при этом вещество и энергия затрачиваются на поиск партнера, а появившиеся на свет потомки зачастую слишком малы и слабы и требуют длительной опеки родителей. 3.3. Онтогенез и присущие ему закономерности. Специализация клеток, образование тканей, органов. Эмбриональное и постэмбриональное развитие организмов. Жизненные циклы и чередование поколений. Причины нарушения развития организмов. Онтогенез и присущие ему закономерности Онтогенез (от греч. онтос — сущее и генезис — возникновение, происхождение) — это процесс индивидуального развития организма от зарождения до смерти. Данный термин был введен в 1866 году немецким ученым Э. Геккелем (1834-1919). Зарождением организма считается возникновение зиготы в результате оплодотворения яйцеклетки сперматозоидом, хотя при партеногенезе зигота как таковая не образуется. В процессе онтогенеза происходят рост, дифференцировка и интеграция частей развивающегося организма. Дифференцировкой (от лат. дифферентио — различие) называют процесс возникновения различий между однородными тканями и органами, их изменения в ходе развития особи, приводящие к формированию специализированных тканей и органов. Закономерности онтогенеза являются предметом изучения эмбриологии (от греч. эмбрион — зародыш и логос — слово, наука). Значительный вклад в ее развитие внесли русские ученые К. Бэр (1792-1876), обнаруживший яйцеклетку млекопитающих и положивший эмбриологические доказательства в основу классификации позвоночных животных, А. О. Ковалевский (1849-1901) и И. И. Мечников (1845-1916) — основоположники теории зародышевых листков и сравнительной эмбриологии, а также А. Н. Северцов (1866-1936), который выдвинул теорию возникновения новых признаков на любом этапе онтогенеза. Индивидуальное развитие характерно только для многоклеточных организмов, поскольку у одноклеточных рост и развитие заканчиваются на уровне единственной клетки, а дифференцировка и вовсе отсутствует. Ход онтогенеза определяется генетическими программами, закрепившимися в процессе эволюции, то есть онтогенез является кратким повторением исторического развития данного вида, или филогенеза. Несмотря на неизбежное переключение отдельных групп генов в ходе индивидуального развития, все изменения в организме происходят постепенно и не нарушают его целостности, однако события каждой предыдущей стадии оказывают значительное влияние на протекание последующих стадий развития. Так, любые сбои в процессе развития способны привести к прерыванию процесса онтогенеза на любой из стадий, как это достаточно часто происходит с зародышами (так называемые выкидыши). Таким образом, для процесса онтогенеза характерно единство пространства и времени действия, поскольку он неразрывно связан с телом особи и протекает однонаправленно. Эмбриональное и постэмбриональное развитие организмов Периоды онтогенеза Существует несколько периодизаций онтогенеза, однако чаще всего в онтогенезе животных выделяют эмбриональный и постэмбриональный периоды. Эмбриональный период начинается с образования зиготы в процессе оплодотворения и заканчивается рождением организма или выходом его из зародышевых (яйцевых) оболочек. Постэмбриональный период продолжается от рождения до смерти организма. Иногда выделяют и проэмбриональный период, или прогенез, к которому относят гаметогенез и оплодотворение. Эмбриональное развитие, или эмбриогенез, у животных и человека делят на ряд стадий: дробление, гаструляция, гистогенез и органогенез, а также период дифференцированного зародыша. Дробление — это процесс митотического деления зиготы на все более мелкие клетки — бласто- меры (рис. 3.5). Сначала образуются две клетки, затем четыре, восемь и т. д. Уменьшение размеров клеток связано в основном с тем, что в интерфазе клеточного цикла по разным причинам отсутствует Gj-период, в котором должно происходить увеличение размеров дочерних клеток. Этот процесс похож на колку льда, однако является не хаотическим, а строго упорядоченным. Например, у человека это дробление является билатеральным, то есть двустороннесимметричным. В результате дробления и последующего расхождения клеток образуется бластула — однослойный многоклеточный зародыш, представляющий собой полый шарик, стенки которого образованы клетками — бластомерами, а полость внутри заполнена жидкостью и называется бластоцелем. Гаструляцией называют процесс образования двух- или трехслойного зародыша — гаструлы (от греч. гастер — желудок), который происходит сразу после образования бластулы. Гаструляция осуществляется путем движения клеток и их групп относительно друг друга, например, впя- чиванием одной из стенок бластулы. Помимо двух или трех слоев клеток, гаструла имеет также первичный рот — бластопор. Слои клеток гаструлы называются зародышевыми листками. Различают три зародышевых листка: эктодерму, мезодерму и энтодерму. Эктодерма (от греч. эктос — вне, снаружи и дерма — кожа) — это наружный зародышевый листок, мезодерма (от греч. мезос — средний, промежуточный) — средний, а энтодерма (от греч. энтос — внутри) — внутренний. Несмотря на то, что все клетки развивающегося организма ведут свое происхождение от единственной клетки — зиготы — и содержат такой же набор генов, то есть являются ее клонами, поскольку образуются в результате митотического деления, процесс гаструляции сопровождается дифференцировкой клеток. Дифференцировка обусловлена переключением групп генов в различных частях зародыша и синтезом новых белков, определяющих в дальнейшем специфические функции клетки и накладывающих отпечаток на ее строение. На специализацию клеток накладывает отпечаток и соседство других клеток, а также гормональный фон. Например, если от одного зародыша лягушки пересадить другому фрагмент, на котором развивается хорда, то это вызовет образование зачатка нервной системы в неположенном месте, и начнет формироваться как бы двойной зародыш. Это явление получило название эмбриональной индукции. Гистогенезом называют процесс формирования зрелых тканей, присущих взрослому организму, а органогенезом — процесс формирования органов. В процессе гисто- и органогенеза из эктодермы формируются эпителий кожи и ее производные (волосы, ногти, когти, перья), эпителий ротовой полости и эмаль зубов, прямая кишка, нервная система, органы чувств, жабры и др. Производными энтодермы являются кишечник и связанные с ним железы (печень и поджелудочная), а также легкие. А мезодерма дает начало всем видам соединительной ткани, в т. ч. костной и хрящевой тканям скелета, мышечной ткани скелетных мышц, кровеносной системе, многим эндокринным железам и т. д. Закладка нервной трубки на спинной стороне зародыша хордовых животных символизирует начало еще одной промежуточной стадии развития — нейрулы (новолат. нейрула, уменьшит, от греч. нейрон — нерв). Этот процесс также сопровождается закладкой комплекса осевых органов, например хорды. После протекания органогенеза наступает период дифференцированного зародыша, который характеризуется продолжением специализации клеток организма и быстрым ростом. У многих животных в процессе эмбрионального развития возникают зародышевые оболочки и другие временные органы, которые не пригодятся в последующем развитии, например плацента, пуповина и др. Постэмбриональное развитие животных по способности к репродукции делят на дорепродуктивный (ювенильный), репродуктивный и пострепродуктивный периоды. Ювенильный период продолжается от рождения до полового созревания, он характеризуется интенсивным ростом и развитием организма. По характеру развития различают прямое и непрямое развитие. При прямом развитии появляющийся на свет организм уже похож на взрослую особь, и процесс развития заключается в основном в увеличении линейных размеров особи, а также в формировании половых органов, как у человека (рис. 3.6, а). При непрямом развитии особь непохожа на взрослую, и в процессе развития происходит существенная перестройка ее организма, как у амфибий (рис. 3.6, б). Наличие в жизненном цикле личинок, непохожих на взрослых особей, позволяет снижать внутривидовую конкуренцию за счет разделения источников питания, способствует расселению малоподвижных или неподвижных организмов, обеспечивает заражение хозяев паразитами, а у некоторых организмов, которые не питаются на взрослой стадии, личинки выполняют и питательную функцию. Рост организма происходит за счет увеличения количества клеток вследствие деления и увеличения их размеров. Выделяют два основных типа роста: ограниченный и неограниченный. Ограниченный, или закрытый рост происходит только в определенные периоды жизни, в основном до полового созревания. Он характерен для большинства животных. Например, человек растет в основном до 13-15 лет, хотя окончательное формирование тела происходит до 25 лет. Неограниченный, или открытый рост продолжается в течение всей жизни особи, как у растений и некоторых рыб. Также существуют периодический и непериодический рост. Процессы роста контролирует эндокринная, или гормональная система: у человека увеличению линейных размеров тела способствует выделение соматотропного гормона, тогда как гонадотропные гормоны в значительной степени подавляют его. Аналогичные механизмы открыты и у насекомых, у которых существует специальный ювенильный гормон и гормон линьки. У цветковых растений эмбриональное развитие протекает после двойного оплодотворения, при котором один спермий оплодотворяет яйцеклетку, а второй — центральную клетку. Из зиготы образуется зародыш, который претерпевает ряд делений. После первого деления из одной клетки формируется собственно зародыш, а из второй — подвесок, через который происходит снабжение зародыша питательными веществами. Центральная клетка дает начало триплоидному эндосперму, содержащему питательные вещества для развития зародыша (рис. 3.7). Эмбриональное и постэмбриональное развитие семенных растений зачастую разделены во времени, поскольку им требуются определенные условия для прорастания. Постэмбриональный период у растений делится на вегетативный, генеративный периоды и период старения. В вегетативном периоде происходит увеличение биомассы растения, в генеративном они приобретают способность к половому размножению (у семенных — к цветению и плодоношению), тогда как в период старения способность к репродукции утрачивается. Жизненные циклы и чередование поколений Вновь образовавшиеся организмы не сразу приобретают способность к воспроизведению себе подобных. Жизненный цикл — совокупность стадий развития, начиная от зиготы, пройдя которые организм достигает зрелости и приобретает способность к размножению. В жизненном цикле происходит чередование стадий развития с гаплоидным и диплоидным наборами хромосом, при этом у высших растений и животных преобладает диплоидный набор, а у низших — наоборот. Жизненные циклы могут быть простыми и сложными. В отличие от простого жизненного цикла, в сложном половое размножение чередуется с партеногенетическим и бесполым. Например, рачки дафнии, дающие в течение лета бесполые поколения, осенью размножаются половым способом. Особенно сложны жизненные циклы некоторых грибов. У ряда животных чередование полового и бесполого поколений происходит регулярно, и такой жизненный цикл называется правильным. Он характерен, например, для ряда медуз. Длительность жизненного цикла определяется числом поколений, развивающихся в течение года, или числом лет, на протяжении которых организм осуществляет свое развитие. Например, растения делят на однолетние и многолетние. Знание жизненных циклов необходимо для генетического анализа, поскольку в гаплоидном и диплоидном состояниях различным образом выявляется действие генов: в первом случае имеются большие возможности для проявления всех генов, тогда как во втором некоторые гены не обнаруживаются. Причины нарушения развития организмов Способность к саморегуляции и к противостоянию вредным влияниям среды возникает у организмов не сразу. В течение эмбрионального и постэмбрионального развития, когда многие защитные системы организма еще не сформировались, организмы обычно уязвимы для действия повреждающих факторов. Поэтому у животных и растений зародыш защищен специальными оболочками или самим материнским организмом. Он либо снабжен специальной питающей тканью, либо получает питательные вещества непосредственно от материнского организма. Тем не менее изменение внешних условий может ускорить или затормозить развитие эмбриона и даже вызвать возникновение различных нарушений. Факторы, вызывающие отклонения в развитии зародыша, называются тератогенными, или тератогенами. В зависимости от природы этих факторов их делят на физические, химические и биологические. К физическим факторам относится, прежде всего, ионизирующая радиация, провоцирующая многочисленные мутации плода, которые могут быть несовместимыми с жизнью. Химическими тератогенами являются тяжелые металлы, бензапирен, выбрасываемый автомобилями и промышленными предприятиями, фенолы, ряд лекарственных препаратов, алкоголь, наркотики и никотин. Особо вредное влияние на развитие эмбриона человека оказывает употребление его родителями алкоголя, наркотиков, курение табака, поскольку алкоголь и никотин угнетают клеточное дыхание. Недостаточное снабжение зародыша кислородом приводит к тому, что в формирующихся органах образуется меньшее количество клеток, органы оказываются недоразвитыми. Особенно чувствительна к недостатку кислорода нервная ткань. Употребление будущей матерью алкоголя, наркотиков, курение табака, злоупотребление лекарствами часто приводит к необратимому повреждению эмбриона и последующему рождению детей с умственной отсталостью или врожденными уродствами. 3.4. Генетика, ее задачи. Наследственность и изменчивость – свойства организмов. Основные генетические понятия. Генетика, ее задачи Успехи естествознания и клеточной биологии в XVIII-XIX веках позволили ряду ученых высказать предположения о существовании неких наследственных факторов, определяющих, например, развитие наследственных болезней, однако эти предположения не были подкреплены соответствующими доказательствами. Даже сформулированная X. де Фризом в 1889 году теория внутриклеточного пангенеза, которая предполагала существование в ядре клетки неких «пангенов», определяющих наследственные задатки организма, и выход в протоплазму только тех из них, которые определяют тип клетки, не смогла изменить ситуацию, как и теория «зародышевой плазмы» А. Вейсмана, согласно которой приобретенные в процессе онтогенеза признаки не наследуются. Лишь труды чешского исследователя Г. Менделя (1822-1884) стали основополагающим камнем современной генетики. Однако, несмотря на то, что его труды цитировались в научных изданиях, современники не обратили на них внимания. И лишь повторное открытие закономерностей независимого наследования сразу тремя учеными — Э. Чермаком, К. Корренсом и X. де Фризом — вынудило научную общественность обратиться к истокам генетики. Генетика — это наука, изучающая закономерности наследственности и изменчивости и методы управления ими. Задачами генетики на современном этапе являются исследование качественных и количественных характеристик наследственного материала, анализ структуры и функционирования генотипа, расшифровка тонкой структуры гена и методов регуляции генной активности, поиск генов, вызывающих развитие наследственных болезней человека и методов их «исправления», создание нового поколения лекарственных препаратов по типу ДНК-вакцин, конструирование с помощью средств генной и клеточной инженерии организмов с новыми свойствами, которые могли бы производить необходимые человеку лекарственные препараты и продукты питания, а также полная расшифровка генома человека. Наследственность и изменчивость — свойства организмов |