Отчёт по плавательной практике. Отчет по плавательной практике курсант 4 курса Радиотехнического отделения Группы эм421
Скачать 4.27 Mb.
|
4. Требования к электроприводам якорно-швартовных механизмов К электроприводам якорно-швартовных механизмов предъявляются следующие требования: – возможность их использования при заданных условиях погоды и моря; – надежность и безотказность в работе, в частности при колебаниях параметров питающей сети, установленных соответствующими правилами и нормами; – возможность пуска в ход под полной нагрузкой; – поддержание необходимого тягового усилия при малых скоростях выбирания цепи или троса вплоть до полной остановки; – соразмерность максимального усилия тяги, развиваемого исполнительным электродвигателем, с прочностью цепи или троса; – получение нормированных скоростей подъема якоря после отрыва от грунта, выбирания швартов и втягивания якоря в клюз; – способность удержания якоря на весу в случае потери питания электроэнергией; – обеспечение безопасного спуска якоря на заданную глубину; – небольшие масса, габариты и стоимость установки; – удобство и простота управления и обслуживания. Все якорно-швартовные механизмы обычно выпускаются с электрооборудованием морского исполнения переменного тока 380 и 220 В частотой 50 Гц и постоянного тока 220 В. Электродвигатели, командоконтроллеры, кулачковые контроллеры и другие элементы электрооборудования, устанавливаемые на палубе, должны быть водозащищенного исполнения; магнитные контроллеры, устанавливаемые в помещениях, должны быть брызгозащищенного исполнения. Якорно-швартовные механизмы должны допускать возможность оборудования их устройствами для дистанционной (с мостика) отдачи якоря. Они также должны быть снабжены счетчиками длины вытравленной якорной цепи, допускающими установку дистанционных репитеров. Якорно-швартовные механизмы оборудуются автоматическим тормозом на валу электродвигателя с устройством для ручного растормаживания. Тормоз предназначен для удерживания механизма от разворота при действии в цепи на звездочке (соединенной с приводом) статического усилия извне, величина которого составляет не менее 1,3–2,0 номинального. Для швартовных шпилей это усилие составляет 1,5 номинального тягового усилия шпиля. 5. Типы электроприводов якорно-швартовных механизмов Для якорно-швартовных механизмов рекомендуются три основные группы электроприводов: 1) с двигателями постоянного тока, питающимися от сети; 2) с двигателями переменного тока, питающимися от сети; 3) с двигателями постоянного тока, питающимися от автономных преобразователей – электромашинных (системы Г – Д) или статических. Для двух первых групп применяются силовые кулачковые контроллеры или магнитные контроллеры с дистанционным управлением. Группа электроприводов по системе Г – Д имеет обычно дистанционное управление. Все три группы электроприводов могут иметь один или два приводных электродвигателя. Приводы с двумя электродвигателями применяются только для крупных якорных и якорно-швартовных механизмов с калибром цепи свыше 62 мм. На постоянном токе используются двигатели смешанного возбуждения серии ДПМ, характеристики которых специально подобраны исходя из требований, предъявляемых к электроприводам палубных механизмов. Из двигателей переменного тока преимущественно применяются короткозамкнутые асинхронные двигатели. Для нормальных якорно-швартовных шпилей с калибром цепи до 28 мм, всех облегченных механизмов и швартовных шпилей с тяговым усилием до 3000 кгс рекомендуются двухскоростные двигатели; для всех остальных механизмов целесообразно использование трехскоростных двигателей. В отечественной серии МАП предусмотрены двухскоростные двигатели на мощность 2–10 кВт и трехскоростные – на мощность 10–60 кВт. На рис. 2. дана схема управления переменного тока для якорно-швартовных механизмов мощностью от 10 до 25 кВт с помощью кулачкового контроллера. Приводной двигатель трехскоростной, причем основной частотой вращения является средняя, на ней производится выбирание якорной цепи с номинальной нагрузкой и отрыв якоря от грунта. Высшая скорость используется для выбирания свободных швартовных канатов, а низшая – для втягивания якоря в клюз и для безопасного подтягивания судна к причалу. Переключение группы обмоток малой и средней частоты вращения и обмотки большой частоты вращения осуществляется контактором КМ1.
Рис. 2. Схема электропривода переменного тока при управлении с помощью кулачкового контроллера Работа на большой скорости ограничивается сравнительно небольшими нагрузками. Чтобы не допустить перегрузки, в схеме предусмотрено тепловое реле КК5, имеющее номинальный ток на одну ступень ниже тока обычной тепловой защиты. При срабатывании реле КК5 катушка контактора КМ1 размыкается и двигатель переключается с большей частоты вращения на среднюю. Чтобы исключить звонковое включение обмотки большой скорости при перегрузке, катушка контактора КМ1 включается на промежуточном третьем положении, а на четвертом рабочем положении катушка питается через блок-контакты КМ1. Защита контроллера – типовая, с помощью автоматического выключателя QF1 и тепловых реле КК1 – КК4. При необходимости работы привода в условиях тепловой перегрузки двигателя контакты тепловых реле шунтируются кнопкой SB. 6. Электроприводы палубных грузовых механизмов Судовые грузоподъемные механизмы (лебедки и краны) по ряду общих признаков классифицируются следующим образом: 1) по характеру выполняемых операций они подразделяются на: а) грузовые лебедки и краны, предназначенные для переработки генеральных грузов, т. е. грузов, перевозимых в упаковке или таре, а также для переработки леса и сыпучих грузов; б) лебедки и краны, предназначенные для специализированных операций – шлюпочные, буксирные, траловые и т. д. 2) по передаточному механизму различаются лебедки и краны с механическим и гидравлическими передачами; 3) по системе управления лебедки и краны делятся на грузоподъемные механизмы с контроллерным и релейно-контакторным управлением электроприводом, а также с управлением по системе Г – Д или посредством магнитных усилителей и статических преобразователей; 4) по роду тока различаются грузоподъемные механизмы с электроприводом постоянного и переменного тока. 6. Требования, предъявляемые к электроприводам
грузоподъемных устройств Эксплуатационные показатели судов транспортного флота в значительной степени зависят от производительности грузовых операций, которая, в свою очередь, во многом зависит от характеристик и надежности работы судовых грузоподъемных механизмов. К современным грузовым лебедкам и кранам предъявляется ряд требований как технического, так и эксплуатационно-экономического характера. Основными из них являются: а) достаточно высокая производительность грузовых операций (до 50 ц/ч с номинальным грузом и до 70–80 ц/ч с половинным грузом); б) необходимый диапазон изменения рабочих скоростей, достаточный для оперативной и безопасной работы с различными грузами; в) высокая надежность электропривода, под которой понимается обеспечение безотказной работы в течение разгрузки (или погрузки) судна; г) простота схемы и конструкции; д) простота и удобство обслуживания, минимальный уход при эксплуатации; е) минимальное отрицательное влияние пусковых токов и двигателя на судовую сеть; ж) минимальные мощность электропривода и расход электроэнергии; з) минимальная стоимость оборудования и площадь, необходимая для его размещения на судне. В большинстве случаев высокая производительность, способствуя сокращению погрузочно-разгрузочных работ и продолжительности стоянки судна в портах, значительно улучшает экономические показатели эксплуатации всего судна в целом. Поэтому естественно, что требование высокой производительности во многих случаях является доминирующим. Высокой производительности грузовых операций добиваются тремя путями: 1) обеспечением достаточной скорости подъема. Обычно она колеблется в пределах 0,2–1,0 м/с (12–66 м/мин). Более высокие скорости для судовых устройств нерациональны вследствие малой высоты подъема грузов. Увеличение скорости подъема выше 50–60 м/мин перестает влиять на продолжительность всего цикла и не способствует увеличению производительности даже в том случае, если за счет увеличения мощности двигателей обеспечить достаточные ускорения, которые позволили выходить на максимальную скорость. При погрузке судна проходимые грузом пути по мере заполнения трюма изменяются и достижение высоких скоростей становится все более затруднительным. За короткий путь перемещения груза по высоте исполнительный двигатель не успевает достигнуть полной скорости. Для получения более гибкой системы управления наряду с максимальной скоростью судовые лебедки имеют несколько промежуточных скоростей. Особенно важно иметь устойчивые малые, так называемые установочные скорости подъема и спуска, а также ограничение выбегов при торможении. Значения устойчивых посадочных скоростей определяются из условия гарантии сохранности груза как эквивалентные скорости падения груза с некоторой высоты. В отечественной практике посадочные скорости обычно составляют 9–10 м/мин (эквивалентны скорости при высоте падения 1,0–1,1 мм), однако возможны посадочные скорости до 15 м/мин. Обычно судовые лебедки постоянного тока имеют не менее четырех положений скорости; 2) значительным увеличением диапазона регулирования скорости для обеспечения быстрого подъема и спуска холостого гака и малых грузов. При этом скорость подъема холостого гака допускается обычно несколько выше, а скорость спуска оставляется умеренной, так как слишком быстрый спуск холостого гака может привести к спутыванию троса на барабане лебедки; 3) сокращением продолжительности переходных процессов. Это достигается уменьшением моментов инерции движущихся частей механизма, ограничением скорости двигателя (обычно до 1000 об/мин). Увеличение пусковых моментов ограничивается допустимой кратностью пускового тока, имеющего обычно значения IПУСК = (2,0–2,5)IН. Для обеспечения безопасности работы лебедочные и крановые двигатели снабжаются электромагнитными и механическими тормозами, допускающими ручное растормаживание, а для остановки в верхнем положении – концевыми выключателями. 7. Электропривод грузовых лебедок и кранов Режим работы электропривода грузовых лебедок и кранов является повторно-кратковременным и характеризуется изменением нагрузки приводного двигателя в широких пределах вследствие изменения приемов и общей организации грузовых работ (подтаскивание груза, спаренная работа двух лебедок на один гак и т. п.). Наиболее распространен привод грузовых лебедок с электрическим реверсированием двигателя и регулированием его скорости при подъеме и спуске груза с электрическим и механическим торможением. Судовые лебедки и подъемные механизмы кранов имеют следующие основные типы электроприводов: а) с двигателями постоянного тока смешанного возбуждения при контроллерных или релейно-контакторных схемах управления; б) по системе генератор-двигатель или с тиристорным управлением; в) с асинхронными короткозамкнутыми многоскоростными двигателями; г) асинхронными двигателями с фазным ротором. В качестве примера рассмотрим схему электропривода грузовой лебедки, выполненной на базе асинхронного двигателя с фазным ротором с релейно-контакторным управлением (рис.3).
Питание на привод подается автоматическим выключателем QF, который одновременно обеспечивает защиту от коротких замыканий. Для подключения к сети электродвигателя должен сработать один из контакторов КМ1 или КМ2. В роторную цепь электродвигателя включены пусковые резисторы R1 и R2, которые по мере разгона электродвигателя шунтируются силовыми контактами контакторов КМ3 и КМ4. Выбор направления вращения осуществляется включением одного из контакторов КМ1 и КМ2 после нажатия кнопок SBВ или SBН соответственно. После этого двигатель разгоняется по искусственной механической характеристике, соответствующей включению в цепь ротора дополнительного сопротивления R1+R2 (рис. 4). Одновременно замыкается блок-контакт одного из контакторов КМ1 (КМ2) в цепи питания обмотки реле времени КТ1. Последнее запускает выдержку времени, по истечении которой замыкается контакт КТ1 в цепи обмотки контактора КМ3. Контактор срабатывает и замыкает свои силовые контакты в цепи ротора электродвигателя, шунтируются сопротивления R1, и двигатель переходит на вышерасположенную искусственную механическую характеристику. Кроме того, замыкается блок-контакт КМ3 в цепи обмотки реле времени КТ2. Последнее отсчитывает выдержку времени, по истечении которой замыкает свой контакт в цепи обмотки контактора КМ4. Контактор срабатывает и замыкает свои силовые контакты в цепи ротора электродвигателя, переводя его на естественную механическую характеристику, по которой двигатель разгоняется до точки, соответствующей номинальному режиму.
Рис.3. Схема электропривода грузовой лебедки
Рис. 4. Механические характеристики электропривода Таким образом, разгон двигателя происходит по трем механическим характеристикам, последовательно проходя через точки 0–1–2–3–4–5. Остановка электропривода производится нажатием кнопки стоп SBС Автоматизация главных двигателей и вспомогательных дизель-генераторов. Назначение, тип, состав, структура, функции систем автоматизации ГД и Д-Г. Функциональные и принципиальные схемы систем управления, контроля, сигнализации. Дизели имеют четыре степени автоматизации (ГОСТ 14228—80). У дизелей с первой степенью автоматизации предусмотрены: автоматическое регулирование основных параметров, местное и (или) дистанционное управление, индикация, АПС и защита (остановка) дизеля, возможность работы в течение определенного времени (не менее 4—12 ч) без обслуживания. При второй степени автоматизации, которая включает в себя объем первой степени, предусматриваются дистанционное автоматическое управление или автоматическое управление и существенное увеличение времени работы дизелей (до 50 ч) без обслуживания. Дизель-генератор с такой степенью автоматизации практически не нуждаются в непосредственном обслуживании персоналом в продолжение нескольких вахт и могут управляться из шумоизолированных кабин с кондиционированием. При третьей степени автоматизации, включающей объемы первой и второй степеней, предусматривается дополнительно дистанционное автоматическое управление или автоматическое управление вспомогательными агрегатами и операциями обслуживания главного двигателя и вспомогательного дизеля, при этом дизели могут работать без непосредственного обслуживания и наблюдения не менее 250 ч. Системы автоматического контроля и защиты обеспечивают безаварийность функционирования дизель-генератор. При четвертой степени автоматизации возможно использование дизелей в комплексно автоматизированных установках, управляемых из единого центра с помощью управляющих машин и контролируемых систем централизованного автоматического контроля. Дизель-генератор современных судовых электроэнергетических установок имеют вторую или третью степень автоматизации. Автоматическое управление судовым дизель-генератор производится с помощью щита управления, на котором расположены: синхронизатор, устройства контроля изоляции электрической сети, аппаратура автоматического управления дизель-генератор, системы защиты, световой и звуковой сигнализации. Для удобства ТО на щите управления судовых электроэнергетических установок нанесена мнемосхема ее функционирования. Для первоначального задания режима работы судовых электроэнергетических установок оператору требуется только запустить первый дизель-генератор, задать режим его работы и назначить резервный дизель-генератор. Автоматическое регулирование дизель-генератор заключается в обеспечении надежной и устойчивой параллельной работы судовых дизель-генератор на общую электрическую сеть ГРЩ. Перераспределение нагрузки между дизель-генератор осуществляется изменением установки регулятора скорости вспомогательного дизеля или изменением степени неравномерности (наклона статической характеристики регулятора). Между валами параллельно работающих генераторов действует момент синхронизации, который в динамических режимах превращает параллельно работающие дизель-генератор в упругую систему, способную развивать дополнительные колебания. Современные дизель-генератор оборудуются всережимными универсальными регуляторами непрямого действия типов Р13МА, РН-30, «Вудвард GU-8», а в отдельных случаях — двухимпульсными регуляторами. В качестве терморегуляторов в системах охлаждения вспомогательного дизеля применяют регуляторы прямого действия с измерителями объемного типа, имеющими жидкий или твердый наполнитель. Частота вращения всех параллельно работающих и питающих сеть дизель-генератор одинакова и соответствует частоте сети. Два дизель-генератор с астатическими характеристиками работать параллельно не могут (один из регуляторов должен быть обязательно статическим). При использовании однорежимных регуляторов скорости (предельных) обеспечить равномерное распределение нагрузки при параллельной работе дизель-генератор без корректирующих устройств невозможно. Для обеспечения равномерного распределения нагрузки между дизель-генератор при всех возможных значениях общей нагрузки сети статические (с наклоном) характеристики их регуляторов должны быть одинаковыми и совмещенными (зеркальное отражение одной в другой относительно вертикальной оси). Все вспомогательного дизеля независимо от степени автоматизации оборудуются системами автоматической аварийной защиты по температуре, давлению масла и давлению воды в контуре охлаждения, а также по частоте вращения вала дизеля Защита (остановка) вспомогательного дизеля должна производиться при достижении любым из контролируемых параметров предельного значения. В цепи генератора имеются системы защиты по величине обратного тока, а также тока при коротком замыкании и при перегрузке генератора. В зависимости от типа дизель-генератор и степени его автоматизации количество этих систем защиты может быть различным. вспомогательного дизеля с третьей степенью автоматизации должны иметь устройства, обеспечивающие автоматическое наполнение топливных, масляных и водяных расходных баков, а также воздушных баллонов для обеспечения работы дизель-генератор без непосредственного обслуживания в течение не менее 150 ч для дизелей с Nе 110 кВт и 240 ч для дизелей с Nе 110 кВт. Наиболее распространенной системой автоматизации судовых электроэнергетических установок на отечественных судах является система «Ижора-5», которая обеспечивает управление судовых электроэнергетических установок судна, состоящей из трех дизель-генератор мощностью по 500 кВт и одного УТГ на 750 кВт, аварийного дизель-генератор на 100 кВт и ГРЩ. Запуск дизель-генератор осуществляется автоматически и дистанционно из центрального пульта управления со щита управления и контроля путем подачи командных сигналов в локальные системы управления дизелями генераторов. УТГ запускается только с местного поста. Система «Ижора-5» контролирует нагрузку каждого работающего генератора. Если нагрузка достигает 90 % от номинальной, оператор со щита управления с помощью переключателя дает сигнал на запуск резервного дизель-генератор. После запуска система автоматически выполняет операции по синхронизации резервного генератора с шинами ГРШ, включению его в параллельную работу, распределению активной нагрузки между генераторами. Сигнал на запуск резервного генератора выдается также при падении частоты вращения главного двигателя ниже значения, обеспечивающего необходимое давление пара перед УТГ. В случае обесточивания судна предусмотрен автоматический запуск резервного дизель-генератор. При возрастании нагрузки на генераторы до 110 % от номинальной срабатывает защитное устройство, которое отключает с выдержкой времени 6 с неответственные потребители первой очереди, а если нагрузка не снижается, то через 2 с — потребители второй очереди, при набросе нагрузки свыше 130 % отключаются сразу все второстепенные потребители без выдержки времени. В режиме питания с берега предусмотрена возможность выполнения полуавтоматической синхронизации работающего агрегата с береговой сетью. При обрыве одной из питающих фаз обеспечивается отключение автомата «питание с берега». Система «Ижора-5» выполняет: — дистанционный контроль основных параметров тока; — непрерывный контроль сопротивления изоляции цепей ГРЩ и аварийного дизель-генератор напряжением 400 и 230 В; автоматическую АПС, предупреждающую о падении напряжения в сети ниже 85 % от номинального, об уменьшении нагрузки на генераторах до 30 % от эксплуатационной, о снижении сопротивления изоляции контролируемых цепей, о «выбеге» основных параметров дизелей дизель-генератор. Система автоматического поддержания уровня масла в картере дизеля рис. 1. Устройство долива масла в картер дизеля. Рис. 2. Она имеет масляный бак, который должен находиться выше уровня масла в картере не менее чем на 1,5 м; устройство долива масла в картер дизеля (рис. 2), открывающее доступ маслу в картер при понижении его уровня; запорный клапан, обеспечивающий долив масла только при работающем дизеле. Датчик реле уровня РУМ-1 срабатывает при резком изменении электрической емкости датчика при погружении его в масло. При понижении уровня масла поплавок, размещаемый по оси дизеля, с помощью рычага перемещает золотник в правую сторону, открывая доступ масла в картер. При доливе масла до определенного уровня поплавок перемещает золотник в обратную сторону и прекращает поступление масла в картер. Эта система применена в ДРУ типов ДГРЗА 100/750 и ДГРЗА 150/750 отечественной постройки для дизелей 6ЧН 18/22. |