Работа. Отчет рекомендуется оформлять следующим образом Содержание основные теоретические положения
Скачать 0.87 Mb.
|
Задание 6 Монета подбрасывается два раза. Событие А – второй раз выпал герб, событие В – хотя бы 1 раз выпал герб. Условная вероятность равна … Монета подбрасывается два раза. Событие А – хотя бы 1 раз выпал герб, событие В – хотя бы 1 раз выпала решка. Условная вероятность равна … Опыт состоит в последовательном подбрасывании двух монет. Событие А – герб выпал на первой монете; событие В – хотя бы 1 раз выпала решка. События А и В являются …
Бросают две монеты. Событие А – герб выпал на первой монете; событие В – герб выпал на второй монете. Вероятность события А+В равна… Два события А и В называются _________, если появление одного из них не меняет вероятности появления другого
Формула полной вероятности и формула Байеса В первом ящике 7 красных и 9 синих шаров, во втором – 4 красных и 11 синих. Из произвольного ящика достают один шар. Вероятность того, что он красный равна …
В первой урне 4 черных и 6 белых шаров. Во второй урне 3 белых и 7 черных шаров. Из наудачу взятой урны вынули один шар. Тогда вероятность того, что этот шар окажется белым, равна…
Событие А может наступить лишь при условии появления одного из двух несовместных событий и , образующих полную группу событий. Известны вероятность и условные вероятности , . Тогда вероятность равна …
Формула полной вероятности имеет вид …
В первой урне 3 белых и 7 черных шаров. Во второй урне 1 белый и 9 черных шаров. Из наудачу взятой урны вынули один шар. Тогда вероятность того, что этот шар окажется черным, равна…
В каждой из двух урн содержится 6 белых и 4 черных шара. Из первой урны во вторую переложили один шар. Вероятность того, что шар, извлеченный из второй урны после перекладывания, окажется белым, равна…
Формула Байеса имеет вид …
В первой урне 4 белых и 6 черных шаров, во второй урне 8 белых и 2 черных шара. Из наугад выбранной урны достали белый шар. Вероятность того, что белый шар достали из первой урны равна …
Если произошло событие А, которое может появиться только с одной из гипотез Н1, Н2, …, Hn образующих полную группу событий, то произвести количественную переоценку априорных (известных до испытания) вероятностей гипотез можно по …
Событие А может наступить лишь при условии появления одного из трех несовместных событий , , , образующих полную группу событий. Известны вероятности: , , , и . Установите соответствие
|