Главная страница
Навигация по странице:

  • 1 этап – отборочный

  • 2 этап. Соревнование экипажей.

  • Задание 2. Геометрические задания.

  • 4 этап. Конкурс командиров.

  • 5 этап. Заключительный.

  • Подведение итогов. Литература.

  • Неделя математики. Петуховой Нины Михайловны


    Скачать 0.7 Mb.
    НазваниеПетуховой Нины Михайловны
    Дата10.03.2022
    Размер0.7 Mb.
    Формат файлаdoc
    Имя файлаНеделя математики.doc
    ТипДокументы
    #390688
    страница4 из 12
    1   2   3   4   5   6   7   8   9   ...   12

    Математическая лотерея




    Игра-решение задач, 9 класс



    Игроки вытягивают билеты с задачами.

    Задачи



    № 1. Река разделяет город на 4 части, соединённые между собой шестью мостами. Один турист решил обойти все мосты, побывав на каждом только один раз. Как это можно сделать, если не требовать обязательного возвращения в тот же район города, из которого начался обход?






    №2.Четвёртые части квадрата и правильного треугольника отрезаны, как показано на рисунке. Каждую из оставшихся фигур разделите на 4 равные части.



    а) б)


    №3.Назовите слова, имеющие ось симметрии.

    № 4. Сколько всевозможных фигур можно сложить из 5 квадратиков? Нарисуйте на клетчатой бумаге.

    №5. Четыре страны имеют форму треугольников. Как расположены страны одна относительно другой, если у каждой из них есть общие границы с тремя другими?
    №.6. Деревянный куб покрасили снаружи краской, каждое его ребро разделили на 5 равных частей, после чего куб распилили так, что получились маленькие кубики., у которых ребро в 5 раз меньше, чем у исходного куба. Сколько получилось маленьких кубиков? У скольких кубиков окрашены три грани? Две грани? Только одна грань? Сколько осталось неокрашенных кубиков?
    №7.Разделите правильный треугольник на 3 одинаковые трапеции.
    №8. С помощью чертёжного угольника найдите центр данной окружности.
    №9.Во сколько раз увеличится объём куба, если его ребро увеличить в 4 раза?
    №10. Найдите выход из лабиринта. (Рисунок в книге, откопировать)

    Литература. Наглядная геометрия. 5-6 кл. : пособие для общеобразовательных учреждений / И. Ф. Шарыгин, Л. Н. Ерганжиева. – 7-е изд., стереотип. –М. : Дрофа, 2005.

    Математический турнир


    3-4 кл

    Соревнование экипажей по 2 человека.

    1 этап – отборочный. Всем детям задаются вопросы; кто правильно отвечает, тот выходит – это командир 1 экипажа. Следующий правильно ответивший – командир 2 экипажа и т. д. До 4 экипажей. Ответивший на 5 вопрос-это член 1 экипажа и т. д. Всего вопросов 8.
    Вопросы.

    1.Как называется многоугольник, у которого 3 угла?

    2.Назовите наибольшее однозначное число.

    3. Назовите все числа, на которые делится число 4.

    4.Назовите наименьшее двузначное число.

    5.Назовите число, состоящее из двух десятков и пяти единиц.

    6.Чем отрезок отличается от прямой?

    7. Сколько вершин у квадрата?

    8.Сколько сантиметров в 1 дециметре?

    9. Сколько граммов в 1 килограмме?

    10. Что называют периметром прямоугольника?
    2 этап. Соревнование экипажей.
    Задание 1. Задачи на смекалку.

    1. Как число 10 записать пятью одинаковыми цифрами, соединив их знаками действий? (2+2+2+2+2)

    2. Как число 1 записать тремя различными цифрами, соединив их знаками действий? (По – разному. Например: 0+2-1 и другие)

    3. Мне навстречу бежали поросята: один впереди двух, один между двух и один позади двух. Сколько поросят всего бежало?(3)

    4. Кто становится выше, когда садится? (Собака)

    5. Шестиметровый брусок разрезали на равные части, сделав при этом 5 надрезов. Какой длины получилась каждая часть?(1 м)

    6. Три мальчика- Миша, Серёжа и Гриша живут на разных этажах-5,7,8. Миша живёт не ниже Гриши, а Серёжа не выше Гриши. Кто где живёт? (Серёжа- на 5, Гриша – на 7, Миша – на 8)


    Задание 2. Геометрические задания.


    1. Нарисуй конверт (показать на доске, какой), не отрывая кончика карандаша от бумаги и не проводя дважды один и тот же отрезок.







    1. Как, не отрывая карандаша от бумаги, разделить фигуру на шесть равных треугольников? Проводить линии по сторонам квадратов нельзя.






    1. Раздели равносторонний треугольник на 4 равных треугольника.







    1. Из 5 одинаковых квадратиков составь всевозможные фигуры. Квадратики могут соприкасаться только сторонами. Сколько должно получиться фигур?

    Пример:



    Ответ: 12 фигур

    4 этап. Конкурс командиров.
    1) Сколько листов между пятым и двенадцатым листами альбома? (6)

    2)У брата и сестры было вместе 8 конфет. Когда сестра отдала брату 3 конфеты, конфет у них сталао поровну. Сколько конфет было первоначально у сестры и сколько у брата? ( У брата –1, у сестры –7)
    3 )Из шестнадцати спичек выложена корова. Переложи две спички так, чтобы корова смотрела назад.




    4)Во дворе гуляют куры и поросята. У них всего 5 голов и 14 ног. Сколько кур и сколько поросят? ( 2 поросёнка и 3 курицы).
    5 этап. Заключительный.

    Вспомните пословицы и поговорки, содержащие числа.

    (У семи нянек дитя без глазу. Семеро одного не ждут. Один в поле не воин. Ум хорошо, а два лучше. И другие.)
    Подведение итогов.
    Литература. С. Акимова. Занимательная математика.. - Санкт-Петербург, «Тригон», 1997

    1   2   3   4   5   6   7   8   9   ...   12


    написать администратору сайта