10 геометрия. Пояснительная записка Рабочая программа составлена на основе федерального компонента Государственного образовательного стандарта среднего(полного) общего образования по математике,
Скачать 46.03 Kb.
|
СОДЕРЖАНИЕ ТЕМ УЧЕБНОГО КУРСА 10 класс (2 ч в неделю, всего 69 ч) 1. Введение (аксиомы стереометрии и их следствия). (5 ч). Представление раздела геометрии – стереометрии. Основные понятия стереометрии. Аксиомы стереометрии и их следствия. Многогранники: куб, параллелепипед, прямоугольный параллелепипед, призма, прямая призма, правильная призма, пирамида, правильная пирамида. Моделирование многогранников из разверток и с помощью геометрического конструктора. Цель: ознакомить учащихся с основными свойствами и способами задания плоскости на базе групп аксиом стереометрии и их следствий. О с н о в н а я ц е л ь – сформировать представления учащихся об основных понятиях и аксиомах стереометрии, познакомить с основными пространственными фигурами и моделированием многогранников. Особенностью учебника является раннее введение основных пространственных фигур, в том числе, многогранников. Даются несколько способов изготовления моделей многогранников из разверток и геометрического конструктора. Моделирование многогранников служит важным фактором развития пространственных представлений учащихся. 2. Параллельность прямых и плоскостей. (19 ч). Пересекающиеся, параллельные и скрещивающиеся прямые в пространстве. Классификация взаимного расположения двух прямых в пространстве. Признак скрещивающихся прямых. Параллельность прямой и плоскости в пространстве. Классификация взаимного расположения прямой и плоскости. Признак параллельности прямой и плоскости. Параллельность двух плоскостей. Классификация взаимного расположения двух плоскостей. Признак параллельности двух плоскостей. Признаки параллельности двух прямых в пространстве. Цель: дать учащимся систематические знания о параллельности прямых и плоскостей в пространстве. О с н о в н а я ц е л ь – сформировать представления учащихся о понятии параллельности и о взаимном расположении прямых и плоскостей в пространстве, систематически изучить свойства параллельных прямых и плоскостей, познакомить с понятиями вектора, параллельного переноса, параллельного проектирования и научить изображать пространственные фигуры на плоскости в параллельной проекции. В данной теме обобщаются известные из планиметрии сведения о параллельных прямых. Большую помощь при иллюстрации свойств параллельности и при решении задач могут оказать модели многогранников. Здесь же учащиеся знакомятся с методом изображения пространственных фигур, основанном на параллельном проектировании, получают необходимые практические навыки по изображению пространственных фигур на плоскости. Для углубленного изучения могут служить задачи на построение сечений многогранников плоскостью. 3. Перпендикулярность прямых и плоскостей. (20 ч). Угол между прямыми в пространстве. Перпендикулярность прямых. Перпендикулярность прямой и плоскости. Признак перпендикулярности прямой и плоскости. Ортогональное проектирование. Перпендикуляр и наклонная. Угол между прямой и плоскостью. Двугранный угол. Линейный угол двугранного угла. Перпендикулярность плоскостей. Признак перпендикулярности двух плоскостей. Расстояние между точками, прямыми и плоскостями. Цель: дать учащимся систематические знания о перпендикулярности прямых и плоскостей в пространстве; ввести понятие углов между прямыми и плоскостями. О с н о в н а я ц е л ь – сформировать представления учащихся о понятиях перпендикулярности прямых и плоскостей в пространстве, систематически изучить свойства перпендикулярных прямых и плоскостей, познакомить с понятием центрального проектирования и научить изображать пространственные фигуры на плоскости в центральной проекции. В данной теме обобщаются известные из планиметрии сведения о перпендикулярных прямых. Большую помощь при иллюстрации свойств перпендикулярности и при решении задач могут оказать модели многогранников. В качестве дополнительного материала учащиеся знакомятся с методом изображения пространственных фигур, основанном на центральном проектировании. Они узнают, что центральное проектирование используется не только в геометрии, но и в живописи, фотографии и т.д., что восприятие человеком окружающих предметов посредством зрения осуществляется по законам центрального проектирования. Учащиеся получают необходимые практические навыки по изображению пространственных фигур на плоскости в центральной проекции. 4. Многогранники (15 ч). Многогранные углы. Выпуклые многогранники и их свойства. Правильные многогранники. Цель: сформировать у учащихся представление об основных видах многогранников и их свойствах; рассмотреть правильные многогранники. О с н о в н а я ц е л ь – познакомить учащихся с понятиями многогранного угла и выпуклого многогранника, рассмотреть теорему Эйлера и ее приложения к решению задач, сформировать представления о правильных, полуправильных и звездчатых многогранниках, показать проявления многогранников в природе в виде кристаллов. Среди пространственных фигур особое значение имеют выпуклые фигуры и, в частности, выпуклые многогранники. Теорема Эйлера о числе вершин, ребер и граней выпуклого многогранника играет важную роль в различных областях математики и ее приложениях. При изучении правильных, полуправильных и звездчатых многогранников следует использовать модели этих многогранников, изготовление которых описано в учебнике, а также графические компьютерные средства. 6.Повторение (10ч). Цель: повторить и обобщить материал, изученный в 10 классе.
|