Главная страница
Навигация по странице:

  • Рисунок 5 – Магистральная структура

  • Рисунок 6 – Магистральная-каскадная структура

  • Рисунок 7 – Магистральная-радиальная структура 7.Шинная организация микропроцессорных систем: с одной шиной, с двумя видами шин, с тремя видами шин.

  • Рисунок 8 – МПС с одной шиной

  • Рисунок 9 – МПС с двумя видами шин

  • Рисунок 10 – МПС с тремя видами шин

  • Шинная организация микропроцессорных систем- с одной шиной, с дв. Программа для эвм это упорядоченная последовательность команд, подлежащая обработке


    Скачать 1.97 Mb.
    НазваниеПрограмма для эвм это упорядоченная последовательность команд, подлежащая обработке
    Дата16.04.2023
    Размер1.97 Mb.
    Формат файлаdocx
    Имя файлаШинная организация микропроцессорных систем- с одной шиной, с дв.docx
    ТипПрограмма
    #1065457
    страница4 из 40
    1   2   3   4   5   6   7   8   9   ...   40

    6. Типовые структуры МПС: магистральная, магистрально-каскадная, магистрально-радиальная.


    Магистральная, магистрально-каскадная и магистрально-радиальная структуры

    В зависимости от способа подключения отдельных модулей микропроцессорной системы к системной магистрали различают три типовые структуры микропроцессорных систем:

    1. магистральная;

    2. магистрально-каскадная;

    3. магистрально-радиальная.


    В магистральной структуре (рис. 5) все модули подсистем памяти и ввода/вывода подключаются непосредственно к системной магистрали.


    Рисунок 5 – Магистральная структура

    Это наиболее простая структура. Недостатками магистральной структуры являются:

    • все модули должны поддерживать протокол обмена по системной магистрали и содержать средства сопряжения с ней, которые в зависимости от микропроцессора могут быть достаточно сложными;

    • небольшое быстродействие, так как медленные периферийные устройства могут надолго занимать системную магистраль.
    В магистрально-каскадной и магистрально-радиальной структурах отдельные модули подключаются с помощью специальных контроллеров (адаптеров) шин, основное назначение которых – реализовать приоритетные соотношения при использовании магистрали.

    В магистрально-каскадной структуре (рис. 6) отдельные модули подключаются к контроллеру шины с помощью дополнительного общего канала, например, магистрали или шины ввода/вывода, т.е. по магистральной схеме.


    Рисунок 6 – Магистральная-каскадная структура

    В магистрально-радиальной структуре (рис. 7) каждый модуль подключается к контроллеру шины с помощью индивидуального канала, т. е. по радиальной схеме.

    Рисунок 7 – Магистральная-радиальная структура

    7.Шинная организация микропроцессорных систем: с одной шиной, с двумя видами шин, с тремя видами шин.


    В микропроцессорной системе системная магистраль служит единственным трактом для потоков команд, данных и управления. Наличие общей шины существенно упрощает реализацию МПС, позволяет легко менять ее состав и конфигурацию. Вместе с тем, именно с шиной связан и основной недостаток такой архитектуры: в каждый момент передавать информацию по шине может только одно устройство. Основную нагрузку на шину создают обмены между процессором и памятью, связанные с извлечением из памяти команд и данных и записью в память результатов вычислений. На операции ввода/вывода остается лишь часть пропускной способности шины. Практика показывает, что даже при достаточно быстрой шине для 90% приложений этих остаточных ресурсов обычно не хватает, особенно в случае ввода или вывода больших массивов данных.

    Поэтому при сохранении фон-неймановской концепции последовательного выполнения команд программы шинная архитектура в чистом ее виде оказывается недостаточно эффективной. Более распространена архитектура с иерархией шин, где помимо системной шины имеется еще несколько дополнительных шин. Они могут обеспечивать непосредственную связь между устройствами с наиболее интенсивным обменом, например процессором и кэш-памятью. Другой вариант использования дополнительных шин – объединение однотипных устройств ввода/вывода с последующим выходом с дополнительной шины на системную. Это позволяет снизить нагрузку на общую шину и более эффективно расходовать ее пропускную способность. Наибольшее распространение получили микропроцессорные системы с одной шиной, с двумя или тремя видами шин.

    В структурах с одной шиной имеется одна системная шина, обеспечивающая обмен информацией между процессором и памятью, а также между устройствами ввода/вывода, с одной стороны, и процессором либо памятью – с другой (рис. 8).


    Рисунок 8 – МПС с одной шиной

    Для такого подхода характерны простота и низкая стоимость. Однако одношинная организация не в состоянии обеспечить высокую скорость обмена, причем узким местом является именно шина.

    В МПС с двумя видами шин устройства ввода/вывода подключаются к шинам ввода/вывода, которые берут на себя основной обмен, не связанный с выходом на процессор или память (рис. 9). Подключение осуществляется с помощью адаптеров шин, которые обеспечивают буферизацию данных при их пересылке между системной шиной и контроллерами устройств ввода/вывода. Это позволяет микропроцессорной системе поддерживать работу множества устройств ввода/вывода и одновременно развязать обмен информацией по тракту процессор-память и обмен информацией с устройствами ввода/вывода. Подобная схема существенно снижает нагрузку на скоростную шину процессор-память и способствует повышению общей производительности микропроцессорной системы.


    Рисунок 9 – МПС с двумя видами шин

    Шина процессор-память обеспечивает непосредственную связь между процессором и основной памятью. В современных микропроцессорах такую шину часто называют шиной переднего плана (передней или первичной) и обозначают аббревиатурой FSB (Front-Side Bus). Интенсивный обмен между процессором и памятью требует, чтобы полоса пропускания шины, т.е. количество информации, проходящей по шине в единицу времени, была наибольшей. В варианте с одной шиной роль этой шины выполняет системная шина, однако в плане эффективности значительно выгоднее, если обмен между процессором и основной памятью ведется по отдельной шине. К рассматриваемому виду можно отнести также шину, связывающую процессор с кэш-памятью второго уровня, известную как шина заднего плана (тыльная или вторичная) – BSB (Back-Side Bus). BSB позволяет вести обмен с большей скоростью, чем FSB, и полностью реализовать возможности более скоростной кэш-памяти. Архитектура с использованием шин FSB и BSB известна как архитектура двойной независимой шины DIB (Dual Independent Bus). Наличие двух шин позволяет одновременно обращаться к основной памяти и кэш-памятью второго уровня, тем самым увеличивая общую производительность системы.

    Для подключения быстродействующих периферийных устройств в систему шин может быть добавлена высокоскоростная шина расширения (рис. 10).



    Рисунок 10 – МПС с тремя видами шин

    Шины ввода/вывода подключаются к шине расширения, а уже с нее через адаптер к шине процессор-память. Схема еще более снижает нагрузку на шину процессор-память. Такую организацию шин называют архитектурой с «пристройкой» (mezzanine architecture).
    1   2   3   4   5   6   7   8   9   ...   40


    написать администратору сайта