Главная страница
Навигация по странице:

  • Принцип двоичного кодирования

  • Принцип программного управления

  • Принцип адресности

  • Принцип однородности памяти

  • Рисунок 1 - Структура фон-неймановской вычислительной машины

  • Шинная организация микропроцессорных систем- с одной шиной, с дв. Программа для эвм это упорядоченная последовательность команд, подлежащая обработке


    Скачать 1.97 Mb.
    НазваниеПрограмма для эвм это упорядоченная последовательность команд, подлежащая обработке
    Дата16.04.2023
    Размер1.97 Mb.
    Формат файлаdocx
    Имя файлаШинная организация микропроцессорных систем- с одной шиной, с дв.docx
    ТипПрограмма
    #1065457
    страница1 из 40
      1   2   3   4   5   6   7   8   9   ...   40

    1. Архитектурные принципы фон Неймана.


    Термин «электронная вычислительная машина – ЭВМ» определяется как совокупности технических средств, служащих для автоматизированной обработки дискретных данных по заданному алгоритму.

    В основе архитектуры современных ЭВМ лежит представление алгоритма решения задачи в виде программы последовательных вычислений. Согласно стандарту ISO 2382/1-84, программа для ЭВМ – это «упорядоченная последовательность команд, подлежащая обработке».

    ЭВМ, в которой определенным образом закодированные команды программы хранятся в памяти, известна под названием вычислительной машины (ВМ) с хранимой в памяти программой, а сама концепция вычислительной машины – концепции хранимой в памяти программы (концепция машины с хранимой в памяти программой).

    Сущность фон-неймановской концепции вычислительной машины можно свести к четырем принципам:

    1. двоичного кодирования;

    2. программного управления;

    3. адресности;

    4. однородности памяти.
    Принцип двоичного кодирования

    Вся информация в вычислительной машине (как данные, так и команды) кодируется в двоичной форме и разделяется на единицы (элементы) информации, которые называются словами. Группа двоичных разрядов, составляющих слово, обрабатываются одновременно. Каждый тип информации имеет свой формат. Например, в формате данных с фиксированной запятой обычно выделяют поле знака и поле значащих разрядов.

    Принцип программного управления

    Порядок выполнения действий вычислительной машиной задается алгоритмом. Все действия, предусмотренные алгоритмом решения задачи, представляются в виде программы, состоящей из последовательности управляющих слов – машинных команд. Каждая команда предписывает некоторую элементарную операцию из набора операций, реализуемых вычислительной машиной, с помощью которых осуществляется обработка данных. Команды программы хранятся в последовательных ячейках памяти вычислительной машины и выполняются в естественной последовательности, т. е. в порядке их положения в программе. При необходимости, с помощью специальных команд, эта последовательность может быть изменена. Решение об изменении порядка выполнения команд программы принимается либо на основании анализа результатов предшествующих действий, либо безусловно.

    В формате команды выделяются две части: операционная часть и адресная часть. В операционной части задается код операции. Код операции представляет собой указание, какая операция должна быть выполнена. Адресная часть содержит адреса объектов обработки (операндов) и результата.

    Принцип адресности

    Структурно память вычислительной машины состоит из пронумерованных ячеек, причем процессору в произвольный момент доступна любая ячейка. Слова информации (двоичные коды команд и данных) хранятся в ячейках памяти, а для доступа к ним используются номера соответствующих ячеек, которые называются адресами слов.

    Принцип однородности памяти

    Команды и данные хранятся в одной и той же памяти и внешне в памяти неразличимы, распознать их можно только по способу использования, т.е. разнотипные слова информации различаются по способу использования, но не способом кодирования. Отсутствует явное различие между командами и данными. Их идентифицируют неявным способом при выполнении операций. Так, объект, адресуемый командой перехода, определяется как команда, а операнды, с которыми имеет дело команда, определяются как данные. В свою очередь, назначение (тип) данных не является их неотъемлемой составной частью, т.е. ЭВМ безразлична к целевому назначению данных – ей все равно, какую логическую нагрузку несут обрабатываемые данные. Нет, например, никаких средств, позволяющих явно отличить набор бит, представляющих число с плавающей запятой, от набора бит, являющихся строкой символов. Назначение данных определяется логикой программы. Если машина извлекает из памяти команду сложения чисел с плавающей запятой, то предполагается, что операнды – числа с плавающей запятой, и над операндами выполняется сложение согласно правилам арифметики чисел с плавающей запятой.

    2. Структура фон-неймановской вычислительной машины.


    Фон-неймановская ВМ включает пять функциональных блоков (рис. 1): устройство ввода, память, АЛУ, устройство управления и устройство вывода. Рисунок 1 - Структура фон-неймановской вычислительной машины

    В любой ВМ имеются средства для ввода программ и данных. Информация поступает из подсоединенных к ВМ периферийных устройств (ПУ) ввода. Затем отдельные команды программы одна за другой автоматически поступают в устройство управления (УУ), которое их декодирует и управляет выполнением операции, заданной в команде. Операции обычно выполняются в арифметико-логическом устройстве (АЛУ), содержащем все необходимые для обработки данных схемы. При этом данные должны поступить в АЛУ из памяти. Результаты вычислений выводятся на периферийные устройства вывода. Связь и взаимодействие ВМ и ПУ обеспечивают порты ввода и порты вывода. Термином порт обозначают аппаратуру сопряжения периферийного устройства с ВМ. Совокупность портов ввода и вывода называют устройством ввода/вывода (УВВ). АЛУ и устройство управления вместе образуют центральное процессорное устройство (ЦПУ), которое обычно называют центральным процессором (ЦП) или просто процессором.

    Чтобы программа могла выполняться, команды и данные должны располагаться в основной памяти (ОП), организованной таким образом, что каждое двоичное слово хранится в отдельной ячейке, идентифицируемой адресом, причем соседние ячейки памяти имеют следующие по порядку адреса. Доступ к любым ячейкам запоминающего устройства (ЗУ) основной памяти может производиться в произвольной последовательности. Такой вид памяти известен как память с произвольным доступом. ОП современных ВМ в основном состоит из полупроводниковых оперативные запоминающих устройств (ОЗУ), обеспечивающих как считывание, так и запись информации. Для таких ЗУ характерна энергозависимость – хранимая информация теряется при отключении электропитания. Если необходимо, чтобы часть основной памяти была энергонезависимой, в состав ОП включают постоянные запоминающие устройства (ПЗУ), также обеспечивающие произвольный доступ. Хранящаяся в ПЗУ информация в рабочем режиме ВМ может только считываться (но не записываться).

    В вычислительной машине может быть дополнительная память, известная как вторичная. Введенная информация всегда сначала запоминается в основной памяти, а затем может переноситься во вторичную память для длительного хранения. Вторичная память энергонезависима и чаще всего реализуется на базе магнитных дисков. Информация в ней хранится в виде специальных программно поддерживаемых объектов – файлов.

    Обработка данных осуществляется главным образом в АЛУ. Встроенные операции, как правило, элементарны: функции АЛУ обычно сводятся к простым арифметическим и логическим операциям, а также операциям сдвига. АЛУ обеспечивает обработку двух входных переменных, в результате которой формируется выходная переменная. Более сложные математические действия должны выполняться с помощью программ, использующих встроенные операции. АЛУ содержит набор регистров, используемых для промежуточного хранения информации в процессе ее обработки и называемых рабочими или регистрами общего назначения (РОН). Помимо результата операции АЛУ формирует ряд признаков результата (флагов), характеризующих полученный результат и события, произошедшие в процессе его получения (равенство нулю, знак, четность, перенос, переполнение и т. д.). Флаги могут анализироваться в УУ с целью принятия решения о дальнейшей последовательности выполнения команд программы.

    Устройство управления управляет работой ВМ, организуя автоматическое выполнение программ и обеспечивая функционирование ВМ как единой системы. УУ автоматически, последовательно по одной, выбирает команды из памяти, декодирует каждую из них и генерирует необходимые для ее выполнения сигналы. Для того чтобы получить команду из памяти, УУ прежде всего должно знать ее адрес. Обычно команды выбираются из последовательных ячеек памяти, и их адреса указываются специальным программным счетчиком (program counter), находящимся в устройстве управления. После выборки текущей команды содержимое программного счетчика автоматически увеличивается с тем, чтобы указывать на следующую по порядку команду. Далее, чтобы иметь возможность декодировать и выполнить текущую команду, она помещается в регистр команд (instruction register), который находится в УУ. Код операции однозначно определяет операцию, выполняемую в процессе интерпретации команды. Адресная часть команды (если она присутствует) указывает на ячейки памяти или РОН, к которым нужно обращаться, выполняя команду (например, считывать операнды и записывать результат). Кроме того, УУ синхронизирует работу отдельных блоков ВМ. Эта функция осуществляется с помощью генератора тактовых импульсов (ГТИ), или тактового генератора.

    Таким образом, функционирование ВМ сводится к выполнению последовательности команд программы.
      1   2   3   4   5   6   7   8   9   ...   40


    написать администратору сайта