лод. Программа курса Методика преподавания математики делит его на две части Общая методика
Скачать 7.21 Mb.
|
М». Здесь обобщение и абстрагирование осуществляется заменой имен операций и множеств (N, Q, V) переменными для операции (*) и для множества (М). Этой заменой мы перешли от менее общего к более общему. Подстановкой же вместо переменных постоянных (имен для операции и множества) мы осуществляем конкретизацию, переход от более общего к менее общему, а дальше отбрасыванием кванторов общности («для всяких х, у ... ») и подстановкой постоянных вместо числовых переменных (имен для чисел) мы переходим от общего к единичному. 4.4. Конкретизация основана на известном правиле вывода называемом правилом конкретизации. Смысл этого правила интуитивно ясен: из того, что свойством Р обладают все элементы некоторого множества, следует, что этим свойством обладает произвольный элемент а этого множества. Применяя, например, закон ассоциативности сложения к учетному вычислению суммы. 7 + (93 + 15), мы применяем (неявно) правило конкретизации: мысленно мы отбрасываем в записи закона ассоциативности кванторы общности, подставляем вместо переменных х, у, г постоянные «7», «93» и «15» соответственно и получаем равенство 7 + (93 + 15) - (7 + 93) + 15, следующее из (*) по правилу конкретизации. Как видно, с помощью этого правила мы осуществляем переход от общего к единичному. 4.5. Обобщение, абстрагирование и конкретизация находят широкое применение в специальных методах обучения математике, о которых речь пойдет дальше. Если некоторая реальная ситуация или связанная с нею задача приводит к еще не изученной математической модели, то приходится исследовать новый класс моделей. Для осуществления перехода от конкретной модели к классу моделей такого типа используется обобщение и абстрагирование. Применение же результатов исследования к конкретной модели этого класса предполагает использование конкретизации. Например, пусть некоторая задача описывается о помощью квадратного уравнения когда учащиеся еще не умеют решать подобные уравнения. Это является стимулом для изучения соответствующего класса уравнений (моделей) Переход от конкретной модели (1) к классу моделей (2), т. е. от единичного к общему, осуществляется заменой коэффициентов, представляющих собой имена чисел, числовыми переменными. После исследования этого класса моделей (построения алгоритма для решения любого уравнения этого класса) с помощью конкретизации (подстановки в формуле корней вместо а, Ь, с конкретных коэффициентов) решаем исходное и другие уравнения этого класса. 4.6. Процесс абстрагирования в математике во многом отличается от аналогичного процесса в других науках, поскольку способы абстрагирования зависят от природы изучаемых объектов, характера и целей их изучения. Поэтому естественно, что характеристические особенности абстрагирования в математике неизбежно должны находить некоторое отражение и в методах обучения математике. Наиболее распространенные в математике виды абстракций — обобщающая абстракция (или абстракция отождествления), идеализация и различные абстракции осуществимости — используются и в школьном обучении математике. Однако методически формирование этих абстракций не разработано. Поэтому часто эти и другие математические абстракции вызывают серьезные затруднения, с ними связаны и многие допускаемые учащимися ошибки. Основой абстракции отождествления является отношение эквивалентности. При установлении отношения эквивалентности в исследуемом множестве объектов эквивалентные объекты отождествляются по какому-нибудь свойству, которое абстрагируется от остальных свойств этих объектов и становится самостоятельным абстрактным понятием, находящимся на более высокой ступени абстракции, чем объекты, от которых оно было абстрагировано. Так, отношение равночисленности множеств объединяет в один класс все конечные множества, между которыми можно установить взаимно однозначное соответствие (эквивалентные множества). От множеств, принадлежащих одному и тому же классу эквивалентности, абстрагируется их общее свойство, характеризующее этот класс. Это свойство и является самостоятельным понятием натурального числа, выражающего численность множеств (одна и та же для каждого множества) из данного класса. Так формировалось понятие натурального числа в длительном историческом процессе, так оно формируется и в обучении -дошкольников и младших школьников. Не надо думать, что усвоение детьми последовательности числительных— один, два, три, ..., десять, ... —является признаком сформированное у них понятия натурального числа. формирование этого понятия у детей в какой-то мере имитирует исторический процесс формирования понятия натурального числа. Мы должны предоставить детям возможность сравнивать множества различных предметов по их численности, обнаруживать, что между некоторыми множествами удается установить взаимно однозначное соответствие, между другими не удается. Так возникают классы равночисленных множеств, которым приписываются в качестве характеристик определенные натуральные числа. Как видно, понятие натурального числа, как и другие понятия, формируемые с помощью абстракции отождествления, представляют собой абстракцию от абстракции: от предмета мы переходим к классу эквивалентных (в каком-то отношении) предметов, а от этого класса — к свойству, общему для всех объектов, ему принадлежащих, т. е. эти объекты отождествляются по одному свойству, которое абстрагируется от прочих свойств. Абстрагирование в математике часто выступает как многоступенчатый процесс, результатом которого являются абстракции от абстракций. Рассмотрим еще несколько примеров. Отношение сонаправленности лучей (плоскости или пространства) разбивает множество лучей на классы эквивалентности (классы сонаправленных лучей). Все лучи одного класса отождествляются по свойству одинаковости направления (отношению сонаправленности). По существу каждый класс сонаправленных лучей представляет собой одно направление. Но это направление определяется любым лучом (представителем) этого класса. Отношение подобия фигур разбивает множество всех фигур на классы эквивалентности (классы подобных фигур). Все фигуры одного класса характеризуются одинаковостью формы. По существу каждый такой класс можно называть формой. Но эта форма определяется любой фигурой (любым представителем) этого класса. В школьном обучении не всегда явно вычленяются все этапы абстрагирования. В частности, образование классов эквивалентности, как правило, протекает неявно. Наблюдается свойство у некоторых предметов данного рода или отношение между ними, которое затем абстрагируется от этих предметов и становится самостоятельным понятием. Часто, ничего не говоря о классах эквивалентности, мы сразу же пользуемся представителями этих классов. Проиллюстрируем это на двух примерах. 1. Формируя понятие обыкновенной дроби, мы исходим из реальной потребности разделить целое на несколько равных частей. Получаем дроби: Затем обнаруживаем(также опытным путем), что Т. е. дробиобозначают одно и то же (дробное) число. По существу мы имеем здесь классы эквивалентности, образуемые в множестве дробей(или в множестве пар с помощью отношения эквивалентности Таким образом, но когда мы пишем то имеем в виду, что равны (совпадают) числа, обозначаемые эквивалентными дробями. Эти дроби, принадлежащие одному классу эквивалентности, обозначают одно рациональное число. Это число можно отождествить с классом эквивалентных дробей или с любой дробью (с любым представителем) этого класса. Вполне понятно, что работать с числами-классами практически невозможно. Поэтому все отношения и операции обычно определяются через отношения и операции над представителями классов, причем так, что их результаты не зависят от выбора представителей. Поэтому мы имеем возможность выбирать наиболее простые представители классов (несократимые дроби), с которыми наиболее удобно работать. Как видно, хотя мы в школе и не говорим о классах эквивалентности, но подчеркивание того факта, что есть бесконечно много дробей (например,выражающих одно и то же числе, по существу есть указание на соответствующий класс эквивалентности. 2. Рассмотрим множество всевозможных направленных отрезков или пар точек плоскости или пространства (пару точек (А, В) можно изобразить в виде направленного отрезка с началом А и концом В). Установим в этом множестве отношение эквивалентности т. е. два направленных отрезка эквивалентны, если соответствующие лучи сонаправлены, а длины этих отрезков равны. Так как это отношение является отношением эквивалентности, то оно порождает разбиение множества всех направленных отрезков на классы эквивалентности. Теперь возможны два методически различных продолжения: а) каждый класс эквивалентности называть вектором (это по существу то же, что называть вектором параллельный перенос, так как класс эквивалентных пар точек определяет параллельный перенос); б) называть вектором направленный отрезок, т. е. отождествить класс эквивалентности с любым его представителем. Такое отождествление вполне правомерно, так как практически в физических и других приложениях векторов мы работаем не с классами эквивалентных направленных отрезков, а с теми или иными представителями этих классов, т. е. с направленными отрезками, исходящими из определенных точек. Педагогический подход, состоящий в замене класса его представителем, направлен на понижение уровня абстрактности понятий (направленный отрезок — менее абстрактное понятие, чем класс таких отрезков). Наряду с абстракцией отождествления при построении математических моделей действительности, а следовательно, и при обучении математике используется и такой специфический прием абстрагирования, как идеализация. Под идеализацией имеется в виду образование понятий, наделенных не только свойствами, отвлеченными от их реальных прообразов, но и некоторыми воображаемыми свойствами, отсутствующими у исходных объектов. Это делается для того, чтобы посредством изучения идеализированных образов облегчить в конечном счете изучение их реальных прообразов. Разъяснение этого в процессе обучения на конкретных примерах имеет важное воспитательное значение, раскрывая связь абстрактных, идеализированных понятий с реальным миром. Оно способствует также пониманию способа математизации, построения математических моделей реальных ситуаций. Действительно, нигде в природе не встречается «геометрическая точка» (не имеющая размеров), но попытка построения геометрии, не использующей этой абстракции, не приводит к успеху. Точно так же невозможно развивать геометрию без таких идеализированных понятий, как «прямая линия», «плоскость», «шар» и т. д. Все реальные прообразы шара имеют на своей поверхности выбоины и неровности, а некоторые несколько отклоняются от «идеальной» формы шара (как, например, земля), но если бы геометры стали заниматься такими выбоинами, неровностями и отклонениями, они никогда не смогли бы получить формулу для объема шара. Поэтому мы изучаем «идеализированную» форму шара и хотя получаемая формула в применении к реальным фигурам, лишь похожим на шар, дает некоторую погрешность, полученный приближенный ответ достаточен для практических потребностей. Это должно быть доведено до сознания учащихся. Особым видом идеализации является абстракция потенциальной осуществимости. Например, при построении натуральных чисел абстрагируются от того, что невозможно написать или назвать число, содержащее в десятичной записи слишком много цифр (например, 101000). Нам достаточно допустить возможность, как только дошли до некоторого числа п, написания и следующего за ним числа n + 1. Точно так же при изучении геометрии, пользуясь изображениями лишь конечных участков (отрезков) прямой, мы допускаем возможность неограниченного продолжения их в обе стороны или допускаем возможность безграничного деления отрезка или других фигур. |