|
план. ООП СОО от 31 августа (1). Протокол 1 от 28. 08. 2020г. (О. А. Бовкун) основная образовательная программа среднего общего образования
| Функции
| Оперировать на базовом уровне понятиями: зависимость величин, функция, аргумент и значение функции, область определения и множество значений функции, график зависимости, график функции, нули функции, промежутки знакопостоянства, возрастание на числовом промежутке, убывание на числовом промежутке, наибольшее и наименьшее значение функции на числовом промежутке, периодическая функция, период; оперировать на базовом уровне понятиями: прямая и обратная пропорциональность линейная, квадратичная, логарифмическая и показательная функции, тригонометрические функции; распознавать графики элементарных функций: прямой и обратной пропорциональности, линейной, квадратичной, логарифмической и показательной функций, тригонометрических функций; соотносить графики элементарных функций: прямой и обратной пропорциональности, линейной, квадратичной, логарифмической и показательной функций, тригонометрических функций с формулами, которыми они заданы; находить по графику приближённо значения функции в заданных точках; определять по графику свойства функции (нули, промежутки знакопостоянства, промежутки монотонности, наибольшие и наименьшие значения и т.п.); строить эскиз графика функции, удовлетворяющей приведенному набору условий (промежутки возрастания / убывания, значение функции в заданной точке, точки экстремумов и т.д.).
В повседневной жизни и при изучении других предметов:
определять по графикам свойства реальных процессов и зависимостей (наибольшие и наименьшие значения, промежутки возрастания и убывания, промежутки знакопостоянства и т.п.); интерпретировать свойства в контексте конкретной практической ситуации
| Оперировать понятиями: зависимость величин, функция, аргумент и значение функции, область определения и множество значений функции, график зависимости, график функции, нули функции, промежутки знакопостоянства, возрастание на числовом промежутке, убывание на числовом промежутке, наибольшее и наименьшее значение функции на числовом промежутке, периодическая функция, период, четная и нечетная функции; оперировать понятиями: прямая и обратная пропорциональность, линейная, квадратичная, логарифмическая и показательная функции, тригонометрические функции;
определять значение функции по значению аргумента при различных способах задания функции; строить графики изученных функций;
описывать по графику и в простейших случаях по формуле поведение и свойства функций, находить по графику функции наибольшие и наименьшие значения; строить эскиз графика функции, удовлетворяющей приведенному набору условий (промежутки возрастания/убывания, значение функции в заданной точке, точки экстремумов, асимптоты, нули функции и т.д.); решать уравнения, простейшие системы уравнений, используя свойства функций и их графиков.
В повседневной жизни и при изучении других учебных предметов:
определять по графикам и использовать для решения прикладных задач свойства реальных процессов и зависимостей (наибольшие и наименьшие значения, промежутки возрастания и убывания функции, промежутки знакопостоянства, асимптоты, период и т.п.); интерпретировать свойства в контексте конкретной практической ситуации; определять по графикам простейшие характеристики периодических процессов в биологии, экономике, музыке, радиосвязи и др. (амплитуда, период и т.п.)
| Владеть понятиями: зависимость величин, функция, аргумент и значение функции, область определения и множество значений функции, график зависимости, график функции, нули функции, промежутки знакопостоянства, возрастание на числовом промежутке, убывание на числовом промежутке, наибольшее и наименьшее значение функции на числовом промежутке, периодическая функция, период, четная и нечетная функции; уметь применять эти понятия при решении задач; владеть понятием степенная функция; строить ее график и уметь применять свойства степенной функции при решении задач; владеть понятиями показательная функция, экспонента; строить их графики и уметь применять свойства показательной функции при решении задач; владеть понятием логарифмическая функция; строить ее график и уметь применять свойства логарифмической функции при решении задач; владеть понятиями тригонометрические функции; строить их графики и уметь применять свойства тригонометрических функций при решении задач; владеть понятием обратная функция; применять это понятие при решении задач; применять при решении задач свойства функций: четность, периодичность, ограниченность; применять при решении задач преобразования графиков функций; владеть понятиями числовая последовательность, арифметическая и геометрическая прогрессия; применять при решении задач свойства и признаки арифметической и геометрической прогрессий.
В повседневной жизни и при изучении других учебных предметов:
определять по графикам и использовать для решения прикладных задач свойства реальных процессов и зависимостей (наибольшие и наименьшие значения, промежутки возрастания и убывания функции, промежутки знакопостоянства, асимптоты, точки перегиба, период и т.п.); интерпретировать свойства в контексте конкретной практической ситуации;.
определять по графикам простейшие характеристики периодических процессов в биологии, экономике, музыке, радиосвязи и др. (амплитуда, период и т.п.)
| Достижение результатов раздела II; владеть понятием асимптоты и уметь его применять при решении задач; применять методы решения простейших дифференциальных уравнений первого и второго порядков
|
| Элементы математического анализа
| Оперировать на базовом уровне понятиями: производная функции в точке, касательная к графику функции, производная функции; определять значение производной функции в точке по изображению касательной к графику, проведенной в этой точке; решать несложные задачи на применение связи между промежутками монотонности и точками экстремума функции, с одной стороны, и промежутками знакопостоянства и нулями производной этой функции – с другой.
В повседневной жизни и при изучении других предметов:
пользуясь графиками, сравнивать скорости возрастания (роста, повышения, увеличения и т.п.) или скорости убывания (падения, снижения, уменьшения и т.п.) величин в реальных процессах; соотносить графики реальных процессов и зависимостей с их описаниями, включающими характеристики скорости изменения (быстрый рост, плавное понижение и т.п.); использовать графики реальных процессов для решения несложных прикладных задач, в том числе определяя по графику скорость хода процесса
| Оперировать понятиями: производная функции в точке, касательная к графику функции, производная функции; вычислять производную одночлена, многочлена, квадратного корня, производную суммы функций;
вычислять производные элементарных функций и их комбинаций, используя справочные материалы; исследовать в простейших случаях функции на монотонность, находить наибольшие и наименьшие значения функций, строить графики многочленов и простейших рациональных функций с использованием аппарата математического анализа.
В повседневной жизни и при изучении других учебных предметов:
решать прикладные задачи из биологии, физики, химии, экономики и других предметов, связанные с исследованием характеристик реальных процессов, нахождением наибольших и наименьших значений, скорости и ускорения и т.п.; интерпретировать полученные результаты
| Владеть понятием бесконечно убывающая геометрическая прогрессия и уметь применять его при решении задач; применять для решения задач теорию пределов; владеть понятиями бесконечно большие и бесконечно малые числовые последовательности и уметь сравнивать бесконечно большие и бесконечно малые последовательности; владеть понятиями: производная функции в точке, производная функции;
вычислять производные элементарных функций и их комбинаций; исследовать функции на монотонность и экстремумы; строить графики и применять к решению задач, в том числе с параметром; владеть понятием касательная к графику функции и уметь применять его при решении задач; владеть понятиями первообразная функция, определенный интеграл; применять теорему Ньютона–Лейбница и ее следствия для решения задач.
В повседневной жизни и при изучении других учебных предметов:
решать прикладные задачи из биологии, физики, химии, экономики и других предметов, связанные с исследованием характеристик процессов; интерпретировать полученные результаты
| Достижение результатов раздела II; свободно владеть стандартным аппаратом математического анализа для вычисления производных функции одной переменной; свободно применять аппарат математического анализа для исследования функций и построения графиков, в том числе исследования на выпуклость; оперировать понятием первообразной функции для решения задач; овладеть основными сведениями об интеграле Ньютона–Лейбница и его простейших применениях; оперировать в стандартных ситуациях производными высших порядков; уметь применять при решении задач свойства непрерывных функций; уметь применять при решении задач теоремы Вейерштрасса; уметь выполнять приближенные вычисления (методы решения уравнений, вычисления определенного интеграла); уметь применять приложение производной и определенного интеграла к решению задач естествознания; владеть понятиями вторая производная, выпуклость графика функции и уметь исследовать функцию на выпуклость
|
| Статистика и теория вероятностей, логика и комбинаторика
| Оперировать на базовом уровне основными описательными характеристиками числового набора: среднее арифметическое, медиана, наибольшее и наименьшее значения; оперировать на базовом уровне понятиями: частота и вероятность события, случайный выбор, опыты с равновозможными элементарными событиями;
вычислять вероятности событий на основе подсчета числа исходов.
В повседневной жизни и при изучении других предметов:
оценивать и сравнивать в простых случаях вероятности событий в реальной жизни; читать, сопоставлять, сравнивать, интерпретировать в простых случаях реальные данные, представленные в виде таблиц, диаграмм, графиков
| Иметь представление о дискретных и непрерывных случайных величинах и распределениях, о независимости случайных величин; иметь представление о математическом ожидании и дисперсии случайных величин; иметь представление о нормальном распределении и примерах нормально распределенных случайных величин;
понимать суть закона больших чисел и выборочного метода измерения вероятностей; иметь представление об условной вероятности и о полной вероятности, применять их в решении задач; иметь представление о важных частных видах распределений и применять их в решении задач;
иметь представление о корреляции случайных величин, о линейной регрессии.
В повседневной жизни и при изучении других предметов:
вычислять или оценивать вероятности событий в реальной жизни; выбирать подходящие методы представления и обработки данных; уметь решать несложные задачи на применение закона больших чисел в социологии, страховании, здравоохранении, обеспечении безопасности населения в чрезвычайных ситуациях
| Оперировать основными описательными характеристиками числового набора, понятием генеральная совокупность и выборкой из нее;
оперировать понятиями: частота и вероятность события, сумма и произведение вероятностей, вычислять вероятности событий на основе подсчета числа исходов; владеть основными понятиями комбинаторики и уметь их применять при решении задач; иметь представление об основах теории вероятностей; иметь представление о дискретных и непрерывных случайных величинах и распределениях, о независимости случайных величин; иметь представление о математическом ожидании и дисперсии случайных величин; иметь представление о совместных распределениях случайных величин; понимать суть закона больших чисел и выборочного метода измерения вероятностей; иметь представление о нормальном распределении и примерах нормально распределенных случайных величин; иметь представление о корреляции случайных величин.
В повседневной жизни и при изучении других предметов:
вычислять или оценивать вероятности событий в реальной жизни; выбирать методы подходящего представления и обработки данных
| Достижение результатов раздела II; иметь представление о центральной предельной теореме; иметь представление о выборочном коэффициенте корреляции и линейной регрессии; иметь представление о статистических гипотезах и проверке статистической гипотезы, о статистике критерия и ее уровне значимости; иметь представление о связи эмпирических и теоретических распределений; иметь представление о кодировании, двоичной записи, двоичном дереве; владеть основными понятиями теории графов (граф, вершина, ребро, степень вершины, путь в графе) и уметь применять их при решении задач; иметь представление о деревьях и уметь применять при решении задач; владеть понятием связность и уметь применять компоненты связности при решении задач; уметь осуществлять пути по ребрам, обходы ребер и вершин графа; иметь представление об эйлеровом и гамильтоновом пути, иметь представление о трудности задачи нахождения гамильтонова пути;
|
| Текстовые задачи
| Решать несложные текстовые задачи разных типов; анализировать условие задачи, при необходимости строить для ее решения математическую модель; понимать и использовать для решения задачи информацию, представленную в виде текстовой и символьной записи, схем, таблиц, диаграмм, графиков, рисунков; действовать по алгоритму, содержащемуся в условии задачи; использовать логические рассуждения при решении задачи; работать с избыточными условиями, выбирая из всей информации, данные, необходимые для решения задачи; осуществлять несложный перебор возможных решений, выбирая из них оптимальное по критериям, сформулированным в условии; анализировать и интерпретировать полученные решения в контексте условия задачи, выбирать решения, не противоречащие контексту; решать задачи на расчет стоимости покупок, услуг, поездок и т.п.; решать несложные задачи, связанные с долевым участием во владении фирмой, предприятием, недвижимостью; решать задачи на простые проценты (системы скидок, комиссии) и на вычисление сложных процентов в различных схемах вкладов, кредитов и ипотек; решать практические задачи, требующие использования отрицательных чисел: на определение температуры, на определение положения на временнóй оси (до нашей эры и после), на движение денежных средств (приход/расход), на определение глубины/высоты и т.п.; использовать понятие масштаба для нахождения расстояний и длин на картах, планах местности, планах помещений, выкройках, при работе на компьютере и т.п.
В повседневной жизни и при изучении других предметов:
решать несложные практические задачи, возникающие в ситуациях повседневной жизни
| Решать задачи разных типов, в том числе задачи повышенной трудности; выбирать оптимальный метод решения задачи, рассматривая различные методы; строить модель решения задачи, проводить доказательные рассуждения; решать задачи, требующие перебора вариантов, проверки условий, выбора оптимального результата; анализировать и интерпретировать результаты в контексте условия задачи, выбирать решения, не противоречащие контексту; переводить при решении задачи информацию из одной формы в другую, используя при необходимости схемы, таблицы, графики, диаграммы;
В повседневной жизни и при изучении других предметов:
решать практические задачи и задачи из других предметов
| Решать разные задачи повышенной трудности; анализировать условие задачи, выбирать оптимальный метод решения задачи, рассматривая различные методы; строить модель решения задачи, проводить доказательные рассуждения при решении задачи; решать задачи, требующие перебора вариантов, проверки условий, выбора оптимального результата; анализировать и интерпретировать полученные решения в контексте условия задачи, выбирать решения, не противоречащие контексту; переводить при решении задачи информацию из одной формы записи в другую, используя при необходимости схемы, таблицы, графики, диаграммы.
В повседневной жизни и при изучении других предметов:
решать практические задачи и задачи из других предметов
| Достижение результатов раздела II
|
| Геометрия
| Оперировать на базовом уровне понятиями: точка, прямая, плоскость в пространстве, параллельность и перпендикулярность прямых и плоскостей; распознавать основные виды многогранников (призма, пирамида, прямоугольный параллелепипед, куб); изображать изучаемые фигуры от руки и с применением простых чертежных инструментов; делать (выносные) плоские чертежи из рисунков простых объемных фигур: вид сверху, сбоку, снизу; извлекать информацию о пространственных геометрических фигурах, представленную на чертежах и рисунках; применять теорему Пифагора при вычислении элементов стереометрических фигур; находить объемы и площади поверхностей простейших многогранников с применением формул; распознавать основные виды тел вращения (конус, цилиндр, сфера и шар); находить объемы и площади поверхностей простейших многогранников и тел вращения с применением формул.
В повседневной жизни и при изучении других предметов:
соотносить абстрактные геометрические понятия и факты с реальными жизненными объектами и ситуациями; использовать свойства пространственных геометрических фигур для решения типовых задач практического содержания; соотносить площади поверхностей тел одинаковой формы различного размера; соотносить объемы сосудов одинаковой формы различного размера; оценивать форму правильного многогранника после спилов, срезов и т.п. (определять количество вершин, ребер и граней полученных многогранников)
| Оперировать понятиями: точка, прямая, плоскость в пространстве, параллельность и перпендикулярность прямых и плоскостей; применять для решения задач геометрические факты, если условия применения заданы в явной форме; решать задачи на нахождение геометрических величин по образцам или алгоритмам; делать (выносные) плоские чертежи из рисунков объемных фигур, в том числе рисовать вид сверху, сбоку, строить сечения многогранников; извлекать, интерпретировать и преобразовывать информацию о геометрических фигурах, представленную на чертежах; применять геометрические факты для решения задач, в том числе предполагающих несколько шагов решения; описывать взаимное расположение прямых и плоскостей в пространстве; формулировать свойства и признаки фигур; доказывать геометрические утверждения; владеть стандартной классификацией пространственных фигур (пирамиды, призмы, параллелепипеды); находить объемы и площади поверхностей геометрических тел с применением формул; вычислять расстояния и углы в пространстве.
В повседневной жизни и при изучении других предметов:
использовать свойства геометрических фигур для решения задач практического характера и задач из других областей знаний
| Владеть геометрическими понятиями при решении задач и проведении математических рассуждений; самостоятельно формулировать определения геометрических фигур, выдвигать гипотезы о новых свойствах и признаках геометрических фигур и обосновывать или опровергать их, обобщать или конкретизировать результаты на новых классах фигур, проводить в несложных случаях классификацию фигур по различным основаниям; исследовать чертежи, включая комбинации фигур, извлекать, интерпретировать и преобразовывать информацию, представленную на чертежах; решать задачи геометрического содержания, в том числе в ситуациях, когда алгоритм решения не следует явно из условия, выполнять необходимые для решения задачи дополнительные построения, исследовать возможность применения теорем и формул для решения задач; уметь формулировать и доказывать геометрические утверждения; владеть понятиями стереометрии: призма, параллелепипед, пирамида, тетраэдр; иметь представления об аксиомах стереометрии и следствиях из них и уметь применять их при решении задач; уметь строить сечения многогранников с использованием различных методов, в том числе и метода следов; иметь представление о скрещивающихся прямых в пространстве и уметь находить угол и расстояние между ними; применять теоремы о параллельности прямых и плоскостей в пространстве при решении задач; уметь применять параллельное проектирование для изображения фигур; уметь применять перпендикулярности прямой и плоскости при решении задач; владеть понятиями ортогональное проектирование, наклонные и их проекции, уметь применять теорему о трех перпендикулярах при решении задач; владеть понятиями расстояние между фигурами в пространстве, общий перпендикуляр двух скрещивающихся прямых и уметь применять их при решении задач; владеть понятием угол между прямой и плоскостью и уметь применять его при решении задач; владеть понятиями двугранный угол, угол между плоскостями, перпендикулярные плоскости и уметь применять их при решении задач; владеть понятиями призма, параллелепипед и применять свойства параллелепипеда при решении задач; владеть понятием прямоугольный параллелепипед и применять его при решении задач; владеть понятиями пирамида, виды пирамид, элементы правильной пирамиды и уметь применять их при решении задач; иметь представление о теореме Эйлера,правильных многогранниках; владеть понятием площади поверхностей многогранников и уметь применять его при решении задач; владеть понятиями тела вращения (цилиндр, конус, шар и сфера), их сечения и уметь применять их при решении задач; владеть понятиями касательные прямые и плоскости и уметь применять из при решении задач; иметь представления о вписанных и описанных сферах и уметь применять их при решении задач; владеть понятиями объем, объемы многогранников, тел вращения и применять их при решении задач; иметь представление о развертке цилиндра и конуса, площади поверхности цилиндра и конуса, уметь применять их при решении задач; иметь представление о площади сферы и уметь применять его при решении задач; уметь решать задачи на комбинации многогранников и тел вращения; иметь представление о подобии в пространстве и уметь решать задачи на отношение объемов и площадей поверхностей подобных фигур.
В повседневной жизни и при изучении других предметов:
составлять с использованием свойств геометрических фигур математические модели для решения задач практического характера и задач из смежных дисциплин, исследовать полученные модели и интерпретировать результат
| Иметь представление об аксиоматическом методе; владеть понятием геометрические места точек в пространстве и уметь применять их для решения задач; уметь применять для решения задач свойства плоских и двугранных углов, трехгранного угла, теоремы косинусов и синусов для трехгранного угла; владеть понятием перпендикулярное сечение призмы и уметь применять его при решении задач; иметь представление о двойственности правильных многогранников; владеть понятиями центральное и параллельное проектирование и применять их при построении сечений многогранников методом проекций; иметь представление о развертке многогранника и кратчайшем пути на поверхности многогранника; иметь представление о конических сечениях; иметь представление о касающихся сферах и комбинации тел вращения и уметь применять их при решении задач; применять при решении задач формулу расстояния от точки до плоскости; владеть разными способами задания прямой уравнениями и уметь применять при решении задач;
применять при решении задач и доказательстве теорем векторный метод и метод координат; иметь представление об аксиомах объема, применять формулы объемов прямоугольного параллелепипеда, призмы и пирамиды, тетраэдра при решении задач; применять теоремы об отношениях объемов при решении задач; применять интеграл для вычисления объемов и поверхностей тел вращения, вычисления площади сферического пояса и объема шарового слоя; иметь представление о движениях в пространстве: параллельном переносе, симметрии относительно плоскости, центральной симметрии, повороте относительно прямой, винтовой симметрии, уметь применять их при решении задач; иметь представление о площади ортогональной проекции; иметь представление о трехгранном и многогранном угле и применять свойства плоских углов многогранного угла при решении задач; иметь представления о преобразовании подобия, гомотетии и уметь применять их при решении задач; уметь решать задачи на плоскости методами стереометрии; уметь применять формулы объемов при решении задач
|
| Векторы и координаты в пространстве
| Оперировать на базовом уровне понятием декартовы координаты в пространстве; находить координаты вершин куба и прямоугольного параллелепипеда
| Оперировать понятиями декартовы координаты в пространстве, вектор, модуль вектора, равенство векторов, координаты вектора, угол между векторами, скалярное произведение векторов, коллинеарные векторы; находить расстояние между двумя точками, сумму векторов и произведение вектора на число, угол между векторами, скалярное произведение, раскладывать вектор по двум неколлинеарным векторам; задавать плоскость уравнением в декартовой системе координат; решать простейшие задачи введением векторного базиса
| Владеть понятиями векторы и их координаты; уметь выполнять операции над векторами; использовать скалярное произведение векторов при решении задач; применять уравнение плоскости, формулу расстояния между точками, уравнение сферы при решении задач; применять векторы и метод координат в пространстве при решении задач
| Достижение результатов раздела II;
находить объем параллелепипеда и тетраэдра, заданных координатами своих вершин; задавать прямую в пространстве; находить расстояние от точки до плоскости в системе координат; находить расстояние между скрещивающимися прямыми, заданными в системе координат
|
| История математики
| Описывать отдельные выдающиеся результаты, полученные в ходе развития математики как науки; знать примеры математических открытий и их авторов в связи с отечественной и всемирной историей; понимать роль математики в развитии России
| Представлять вклад выдающихся математиков в развитие математики и иных научных областей; понимать роль математики в развитии России
| Иметь представление о вкладе выдающихся математиков в развитие науки; понимать роль математики в развитии России
| Достижение результатов раздела II
|
| Методы математики
| Применять известные методы при решении стандартных математических задач; замечать и характеризовать математические закономерности в окружающей действительности; приводить примеры математических закономерностей в природе, в том числе характеризующих красоту и совершенство окружающего мира и произведений искусства
| Использовать основные методы доказательства, проводить доказательство и выполнять опровержение; применять основные методы решения математических задач; на основе математических закономерностей в природе характеризовать красоту и совершенство окружающего мира и произведений искусства; применять простейшие программные средства и электронно-коммуникационные системы при решении математических задач
| Использовать основные методы доказательства, проводить доказательство и выполнять опровержение; применять основные методы решения математических задач; на основе математических закономерностей в природе характеризовать красоту и совершенство окружающего мира и произведений искусства; применять простейшие программные средства и электронно-коммуникационные системы при решении математических задач; пользоваться прикладными программами и программами символьных вычислений для исследования математических объектов
| Достижение результатов раздела II; применять математические знания к исследованию окружающего мира (моделирование физических процессов, задачи экономики)
|
Информатика
В результате изучения учебного предмета «Информатика» на уровне среднего общего образования:
Выпускник на базовом уровне научится:
определять информационный объем графических и звуковых данных при заданных условиях дискретизации; строить логическое выражение по заданной таблице истинности; решать несложные логические уравнения; находить оптимальный путь во взвешенном графе; определять результат выполнения алгоритма при заданных исходных данных; узнавать изученные алгоритмы обработки чисел и числовых последовательностей; создавать на их основе несложные программы анализа данных; читать и понимать несложные программы, написанные на выбранном для изучения универсальном алгоритмическом языке высокого уровня; выполнять пошагово (с использованием компьютера или вручную) несложные алгоритмы управления исполнителями и анализа числовых и текстовых данных; создавать на алгоритмическом языке программы для решения типовых задач базового уровня из различных предметных областей с использованием основных алгоритмических конструкций; использовать готовые прикладные компьютерные программы в соответствии с типом решаемых задач и по выбранной специализации; понимать и использовать основные понятия, связанные со сложностью вычислений (время работы, размер используемой памяти); использовать компьютерно-математические модели для анализа соответствующих объектов и процессов, в том числе оценивать числовые параметры моделируемых объектов и процессов, а также интерпретировать результаты, получаемые в ходе моделирования реальных процессов; представлять результаты математического моделирования в наглядном виде, готовить полученные данные для публикации; аргументировать выбор программного обеспечения и технических средств ИКТ для решения профессиональных и учебных задач, используя знания о принципах построения персонального компьютера и классификации его программного обеспечения; использовать электронные таблицы для выполнения учебных заданий из различных предметных областей; использовать табличные (реляционные) базы данных, в частности составлять запросы в базах данных (в том числе вычисляемые запросы), выполнять сортировку и поиск записей в БД; описывать базы данных и средства доступа к ним; наполнять разработанную базу данных; создавать структурированные текстовые документы и демонстрационные материалы с использованием возможностей современных программных средств; применять антивирусные программы для обеспечения стабильной работы технических средств ИКТ; соблюдать санитарно-гигиенические требования при работе за персональным компьютером в соответствии с нормами действующих СанПиН.
Выпускник на базовом уровне получит возможность научиться:
выполнять эквивалентные преобразования логических выражений, используя законы алгебры логики, в том числе и при составлении поисковых запросов; переводить заданное натуральное число из двоичной записи в восьмеричную и шестнадцатеричную и обратно; сравнивать, складывать и вычитать числа, записанные в двоичной, восьмеричной и шестнадцатеричной системах счисления; использовать знания о графах, деревьях и списках при описании реальных объектов и процессов; строить неравномерные коды, допускающие однозначное декодирование сообщений, используя условие Фано; использовать знания о кодах, которые позволяют обнаруживать ошибки при передаче данных, а также о помехоустойчивых кодах ; понимать важность дискретизации данных; использовать знания о постановках задач поиска и сортировки; их роли при решении задач анализа данных; использовать навыки и опыт разработки программ в выбранной среде программирования, включая тестирование и отладку программ; использовать основные управляющие конструкции последовательного программирования и библиотеки прикладных программ; выполнять созданные программы; разрабатывать и использовать компьютерно-математические модели; оценивать числовые параметры моделируемых объектов и процессов; интерпретировать результаты, получаемые в ходе моделирования реальных процессов; анализировать готовые модели на предмет соответствия реальному объекту или процессу; применять базы данных и справочные системы при решении задач, возникающих в ходе учебной деятельности и вне ее; создавать учебные многотабличные базы данных; классифицировать программное обеспечение в соответствии с кругом выполняемых задач; понимать основные принципы устройства современного компьютера и мобильных электронных устройств; использовать правила безопасной и экономичной работы с компьютерами и мобильными устройствами; понимать общие принципы разработки и функционирования интернет- приложений; создавать веб-страницы; использовать принципы обеспечения информационной безопасности, способы и средства обеспечения надежного функционирования средств ИКТ; критически оценивать информацию, полученную из сети Интернет.
|
|
|