Главная страница
Навигация по странице:

  • Глава 1. Общие сведения о задачах на экстремум. Примеры экстремальных задач 1. Общие свойства выпуклых фигур Определение 1.1.1.

  • Определение 1.1.8.

  • Определение 1.1.11.

  • Теорема

  • Определение 1.1.14

  • Оценка периметра многоугольника заданного диаметра. Реферат По теме "Оценка периметра многоугольника заданного диаметра"


    Скачать 1.41 Mb.
    НазваниеРеферат По теме "Оценка периметра многоугольника заданного диаметра"
    Дата24.11.2022
    Размер1.41 Mb.
    Формат файлаdocx
    Имя файлаОценка периметра многоугольника заданного диаметра.docx
    ТипРеферат
    #810129
    страница1 из 5
      1   2   3   4   5



    Реферат

    По теме: "Оценка периметра многоугольника заданного диаметра"
    Оглавление
    Введение

    Глава 1. Общие сведения о задачах на экстремум. Примеры экстремальных задач

    1. Общие свойства выпуклых фигур

    1.1 Задачи

    1.2 Решения

    2. Изопериметрическая задача

    2.1 Задачи

    2.2 Решения

    3. Задачи на максимум и минимум

    3.1 Задачи

    3.2 Решения

    Глава 2. Оценка периметра пятиугольника единичного диаметра

    1. Доказательство равенства четырех диагоналей пятиугольника единице

    2. Отыскание оптимального пятиугольника

    Заключение

    Библиография
    Введение
    В жизни постоянно приходиться сталкиваться с необходимостью принять наилучшее возможное (оптимальное) решение. При этом часто случается так, что полезно прибегнуть к математике.

    Оба понятия максимум и минимум объединяются одним термином "экстремум", что по латыни означает "крайнее". Задачи отыскания максимума и минимума называются экстремальными задачами.

    Экстремальными задачами человек интересовался с античных времен. Уже в Древней Греции знали об экстремальных свойствах круга и шара: среди плоских фигур с одинаковым периметром наибольшую площадь имеет круг (решение изопериметрической задачи); шар имеет максимальный объем среди пространственных фигур с одинаковой площадью поверхности (решение изопифанной задачи). [4, 4]

    История сохранила легенду о следующей самой древней экстремальной задаче, известной как задача Дидоны: указать форму границы участка, имеющей заданную длину, при которой площадь участка максимальна. Считается, что история этой задачи началась в IX веке до н.э., когда, как написал в своей поэме "Энеида" древнеримский поэт Вергилий, царевне Дидоне пришлось решать изопериметрическую задачу. Если знать экстремальное свойство круга, то решение получается немедленно: граница участка представляет часть окружности, имеющей заданную длину. Согласно легенде Дидона справилась с поставленной задачей и на месте отгороженного участка основала город Карфаген. Говорят, что старая крепость Карфагена действительно имела форму круга. [3, 29]

    Экстремальными задачами занимались многие античные ученые (Евклид, Архимед, Аристотель и др.). В началах Евклида – первой научной монографии и первом учебном пособии в истории человечества, в труде вышедшем в IV веке до н.э. имеется задача на максимум. В современной редакции она выглядит так: вданный треугольник АВС вписать параллелограмм ADEF, наибольшей площади.Нетрудно показать, что решением этой задачи является параллелограмм, вершины D, E, F которого делят соответствующие стороны треугольника пополам. [4, 30]

    Известна также задача античного математика Герона Александрийского, с которой мы знакомимся еще в школе: даны две точки А и В по одну сторону от прямой l. Требуется найти на прямой l такую точку D, что бы сумма расстояний от А до D и от В до D была наименьшей. Книга, где была изложена эта задача, называется "О зеркалах". Время написания этой книги неизвестно, но большинство исследователей считают, что она написана в I веке до н.э. При этом сам труд Герона не сохранился, и о нем известно из комментариев к нему написанных позже.

    После гибели античной цивилизации научная жизнь в Европе стала возрождаться только в XV веке. Экстремальные задачи оказались среди тех, которыми интересовались лучшие умы того времени. [4, 7]

    Задачи на экстремумы актуальны и в настоящее время, так как имеется много нерешенных задач на наибольшее и наименьшее значение некоторых величин, связанных с выпуклой фигурой. Так, например, до сих пор не решены следующие задачи: найти минимальную площадь S выпуклой фигуры, если известен диаметр D и ширина этой фигуры, причем ; найти минимальную площадь выпуклой фигуры, если известна ширина и периметр фигуры. [8, 89]

    Основная цель данной работы состоит в рассмотрении различных геометрических задач на максимум и минимум, а также в детальном разборе и доказательстве теоремы о пятиугольнике наибольшего периметра единичного диаметра.

    Данная работа содержит две главы. Глава 1 состоит из трех параграфов. Каждый параграф построен следующим образом: сначала приводятся основные теоретические сведения, а затем рассматриваются задачи с дальнейшим их решением.

    В 1 рассмотрены основные свойства выпуклых фигур. Данный параграф имеет вводный характер и в нем сосредоточены основные определения, используемые в дальнейшем, и приведены простейшие задачи, иллюстрирующие эти определения. Изучение представленных задач, позволяет более детально ознакомиться с определениями выпуклой фигуры, выпуклой кривой, опорной прямой выпуклой фигуры, обыкновенной и угловой точек выпуклой кривой, длины выпуклой кривой и площади выпуклой фигуры.

    2 посвящен одной знаменитой задаче, играющей важную роль во многих разделах математики и физики, а именно так называемой изопериметрической задаче:

    Среди всех плоских фигур данного периметра L найдите ту, которая имеет максимальную площадь.

    Как и первые два параграфа 3 содержит ряд теоретических сведений касающихся вписанной, описанной окружности выпуклой фигуры; центра выпуклой фигуры; особое внимание уделено симметризации выпуклой фигуры, а также представлены некоторые задачи на наибольшие и наименьшие значения численных величин, связанных с выпуклыми фигурами. выпуклый фигура изопериметрический экстремум теорема

    Основное содержание работы составляет вторая глава, которая состоит из двух параграфов. Данная глава посвящена решению одной красивой задачи, а именно отысканию пятиугольника единичного диаметра, имеющего наибольший периметр. Для решения этой задачи доказывается ряд теорем.

    В 1 установив, что диаметр многоугольника совпадает либо с одной из сторон, либо с одной из диагоналей многоугольника (теорема 2.1.1) показывается, что в пятиугольнике наибольшего периметра единичного диаметра, или в оптимальном пятиугольнике, все стороны меньше 1 (теорема 2.1.2). При этом доказательство данной теоремы опирается на лемму о том, что сумма расстояний от точки дуги окружности до ее концов принимает наибольшее значение, когда эта точка делит дугу пополам. Затем в результате последовательного доказательства двух теорем (теорема 2.1.3 и теорема 2.1.4) устанавливается, что в оптимальном пятиугольнике, по крайней мере, четыре диагонали равны 1.

    В 2 делается вывод о том, что оптимальным пятиугольником является правильный пятиугольник (теорема 2.2.1).

    Было замечено, что в случае выпуклого четырехугольника оптимальным является не квадрат. [2, 269]
    Глава 1. Общие сведения о задачах на экстремум. Примеры экстремальных задач
    1. Общие свойства выпуклых фигур
    Определение 1.1.1. Плоская фигура называется выпуклой, если она целиком содержит прямолинейный отрезок, соединяющий любые две принадлежащие фигуре точки.


    Рис. 1.1.1
    Так, на рис. 1.1.1 фигуры а), б), в) выпуклые фигуры, а фигура на рисунке 1.1.1 г) не выпукла. Круг и треугольник являются выпуклыми фигурами, четырехугольник же может быть как выпуклым, так и невыпуклым в зависимости от того, пересекаются ли его диагонали внутри или вне четырехугольника (рис. 1.1.2 а, б). [1, 38]


    Рис. 1.1.2
    Определение 1.1.2. Пересечением двух (или нескольких) фигур называется фигура, состоящая из всех точек, принадлежащих обеим (или всем, если их несколько) фигурам.

    Определение 1.1.3. Фигура называется ограниченной, если она целиком помещается внутри некоторой окружности. [8, 13]

    Например, всякий параллелограмм, треугольник, круг, а также все фигуры, изображенные на рис. 1.1.1, являются ограниченными фигурами.

    На рис. 1.1.3 изображено несколько неограниченных фигур; из них выпуклыми являются фигуры а)(полуплоскость), б)(полоса), в)(угол) и г).


    Рис. 1.1.3
    По отношению ко всякой плоской фигуре все точки плоскости делятся на три категории: внутренние, внешние и граничные. [8, 14]

    Определение 1.1.4. Точка фигуры называется внутренней, если существует круг (хотя бы очень малого радиуса) с центром в этой точке, целиком принадлежащий фигуре.

    Внутренними точками фигуры будут, например, точки А и А' на рис. 1.1.4.


    Рис. 1.1.4
    Определение 1.1.5. Точка называется внешней по отношению к фигуре, если существует круг с центром в этой точке, не содержащий точек фигуры.

    Примером внешней точки по отношению к фигуре является точка В на рис. 1.1.4.
    Определение 1.1.6. Точка фигуры называется граничной, если любой круг с центром в данной точке, всегда будет содержать как точки, принадлежащие фигуре, так и точки, не принадлежащие ей.

    Например, точка С на рис. 1.1.4 является примером граничной точки фигуры. [7, 185]

    Граничные точки фигуры образуют некоторую линию — кривую или ломаную. Эта линия называется границей фигуры. Если плоская линия является границей некоторой выпуклой фигуры, то она называется выпуклой кривой, или — в том случае, когда эта линия ломаная,— выпуклым многоугольником. [7, 186]

    Определение 1.1.7. Выпуклым многоугольником называют и плоскую фигуру, и линию — границу этой фигуры.

    Определение 1.1.8. Точками, принадлежащими фигуре, или, точками фигуры, называют все ее внутренние или граничные точки.

    Определение 1.1.9. Если множество содержит все свои граничные точки, то оно называется замкнутым. Если же множество не содержит ни одной своей граничной точки, т.е. состоит из одних внутренних точек, то оно называется открытым. [7, 15]

    Определение 1.1.10. Одномерные выпуклые фигуры это линии, обладающие тем свойством, что отрезок АВ,соединяющий любые две точки А и В такой линии, целиком принадлежит ей. [8, 16]

    Одномерные выпуклые фигуры можно охарактеризовать как выпуклые фигуры, все точки которых являются граничными.

    Двумерные (плоские) выпуклые фигуры могут быть весьма разнообразны (см., например, фигуры а), б), в)на рис. 1.1.1 и а), б), в), г)на рис. 1.1.3).

    Определение 1.1.11. Отрезок это ограниченная одномерная выпуклая фигура.

    Пусть Ф — произвольная плоская фигура.

    Определение 1.1.12. Прямая lназывается опорной прямой фигуры Ф, если она проходит хотя бы через одну граничную точку фигуры Ф и вся фигура Ф расположена по одну сторону от прямойl (рис. 1.1.5).


    Рис. 1.1.5
    Например, прямая, проведенная через вершину треугольника параллельно противолежащей стороне (рис. 1.1.6, а),или сторона треугольника (рис. 1.1.6,6)являются опорными прямыми треугольника; каждая сторона выпуклого многоугольника является его опорной прямой. Касательная к окружности является опорной прямой для круга, ограниченного этой окружностью (рис. 1.1.6, в).Опорная прямая может иметь с выпуклой ограниченной фигурой или единственную общую точку (см., например, рис. 1.1.6, а, в),или целый общий отрезок (рис. 1.1.6, б);если выпуклая фигура не ограничена, то опорная прямая может даже целиком принадлежать фигуре (рис. 1.1.6, г). [8, 18]



    Рис. 1.1.6
    Опорную прямую выпуклой фигуры Ф можно также определить следующим образом:

    Определение 1.1.13. Опорная прямая выпуклой фигуры Ф - это такая прямая, которая содержит граничные точки фигуры, но не содержит ни одной ее внутренней точки.

    Действительно, прежде всего ясно, что опорная прямая не может содержать внутренней точки А фигуры: в противном случае точки фигуры Ф, расположенные внутри некоторой окружности с центром в точке А,находились бы по обе стороны от опорной прямой (рис. 1.1.7). С другой стороны, если прямая lне содержит внутренних точек выпуклой фигуры Ф, то вся фигура должна быть расположена по одну сторону от l. Действительно, пусть А — какая-нибудь внутренняя точка Ф. Если бы какая-либо (внутренняя или граничная) точка В фигуры находилась по другую сторону от прямой l, чем точка А (рис. 1.1.8), то точка пересечения прямой l с отрезком АВ была бы внутренней точкой Ф (см. задачу 1.1.3 а, б). [8, 19]

    Теорема 1.1.1. К каждой ограниченной выпуклой фигуре можно провести в точности две опорные прямые, параллельные данному направлению.

    Доказательство.

    Для того чтобы это доказать, проведем через каждую точку ограниченной выпуклой фигуры Ф прямую, параллельную данному направлению (рис. 1.1.9). Все эти прямые пересекают произвольную прямую, перпендикулярную к выбранному направлению, по одномерной выпуклой фигуре (если А и В — две произвольные точки пересечения нашей совокупности прямых с перпендикулярной к ним прямой, а С—произвольная точка отрезка АВ,то С тоже должна принадлежать этому пересечению; это нетрудно видеть из рис. 1.1.9, если воспользоваться выпуклостью фигуры Ф). Следовательно, это пересечение должно быть отрезком прямой линии (ограниченность пересечения вытекает из ограниченности фигуры Ф), а совокупность прямых, параллельных заданному направлению, проведенных через все точки Ф, должна представлять собой полосу. Крайние (граничные) прямые l1 и l2 этой полосы и являются двумя опорными прямыми, параллельными заданному направлению.


    Рис. 1.1.9
    Теорема доказана. [8, 20]

    Определение 1.1.14. Наибольшее расстояние между двумя точками плоской фигуры Ф называется диаметром фигуры.

    Иначе говоря, диаметром фигуры Ф называется такое расстояние d, что, во-первых, расстояние между любыми двумя точками М и N фигуры Ф не превосходитd и, во-вторых, можно отыскать в фигуре Ф хотя бы одну пару точек А и В, расстояние между которыми в точности равно d. [1, 6]

    Например, для круга диаметр, в указанном смысле, совпадает с обычным его диаметром (наибольшая из хорд).

    Определение 1.1.15. Пусть К выпуклая кривая l и l’’ две ее параллельные опорные прямые. Расстояние h между этими опорными прямыми называется шириной кривой К в направлении перпендикулярном к прямым l и l’’ (рис. 1.1.10). [7, 198]


    Рис. 1.1.10
    Определение 1.1.16. Наименьшую ширину выпуклой кривой К называют шириной К.

    Определение 1.1.17. Совокупность лучей, исходящих из одной точки О,называется выпуклой, если она содержит все лучи, проходящие внутри угла, меньшего 180°, образованного любыми двумя лучами совокупности, не составляющими продолжение один другого.

    Теорема 1.1.2. Выпуклая совокупность лучей может быть одним лучом, парой лучей, являющихся продолжением один другого, углом, меньшим 180°, полуплоскостью либо целой плоскостью (рис. 1.1.11).


    Рис. 1.1.11
    Доказательство.

    В самом деле, из определения выпуклой совокупности лучей непосредственно следует, что пересечение такой совокупности с любой прямой, не проходящей через точку О,выпукло. Рассматривая пересечения выпуклой совокупности лучей, с двумя параллельными прямыми, расположенными по разные стороны от точки О,и учитывая, что каждое из этих пересечений может совсем не содержать точек, быть единственной точкой, отрезком, лучом или всей прямой, нетрудно выяснить, что выпуклая совокупность лучей может быть только одного из перечисленных выше видов; все возможные здесь случаи приведены на рис. 1.1.12. [8, 21]


    Рис. 1.1.12
    Теорема доказана. [8, 22]

    Пусть Ф — некоторая выпуклая фигура и О — ее граничная точка. Проведем из точки О лучи, соединяющие ее с каждой точкой (внутренней или граничной) фигуры Ф (рис. 1.1.13).


    Рис. 1.1.13
    Мы получим выпуклую совокупность лучей. В самом деле, если ОА и ОВ — два луча данной совокупности (А и В — точки фигуры Ф), то все лучи, расположенные внутри острого угла АОВ,пересекают отрезок АВ,целиком состоящий из точек фигуры Ф, и, следовательно, принадлежат данной совокупности. [8, 22]

    Получившаяся совокупность лучей не может быть единственным лучом или парой лучей, составляющих продолжение один другого, так как считается, что фигура не одномерна.

    Нетрудно так же показать, что эта совокупность лучей не может заполнить всю плоскость. Действительно, если лучи заполняют плоскость, то среди них можно выбрать две такие пары лучей ОА и ОВ, ОС и ОD,что лучи каждой пары, составляют продолжение один другого. Пусть А, В, С,D—точки выпуклой фигуры, лежащие на этих лучах (рис. 1.1.14). Фигура Ф вместе с точками А, В,С должна содержать весь треугольник АВС (см. рис. 1.1.14) и вместе с точками А, В,D—весь треугольник АВD,т. е. она должна содержать весь выпуклый четырехугольник АСВD, для которого точка О является внутренней. Таким образом, в этом случае точка О не может быть граничной точкой фигуры Ф. [8, 23]



    Рис. 1.1.14
    Следовательно, рассматриваемая совокупность лучей будет либо полуплоскостью, либо углом, меньшим 180°. В первом случае (рис. 1.1.15) точка Оназывается обыкновенной точкой выпуклой кривой К, ограничивающей фигуру Ф.

    Прямая Г, ограничивающая полуплоскость, является опорной прямой фигуры Ф (все точки Ф лежат на лучах нашей совокупности, а следовательно, с одной стороны от прямой Г).


    Рис. 1.1.15 Рис. 1.1.16
    При этом прямая Г является единственной опорной прямой фигуры Ф в точке О,так как по обе стороны от каждой другой прямой l, проходящей через О,есть лучи нашей совокупности, а следовательно, и точки фигуры Ф (рис. 1.1.15). Такая опорная прямая Г фигуры Ф, ограничивающая полуплоскость, называется касательной в точке О квыпуклой кривой К.[7, 188]

    Во втором случае, когда выпуклая совокупность лучей является углом, меньшим 180°, точка Оназывается угловой точкой выпуклой кривой К,ограничивающей фигуру Ф (рис. 1.1.16).

    Все точки фигуры Ф заключены в этом случае внутри угла МОN;поэтому всякая прямая l, проходящая внутри угла МОN,смежного с углом МОN,будет опорной прямой фигуры Ф. В частности, опорными будут и лучи ОМ, ОN,которые называются полукасательным в точке О к выпуклой кривой К, ограничивающей фигуру Ф. [1, 40]

    Определение 1.1.18. Угол MON = называется внутренним углом (или просто углом) выпуклой кривой К или выпуклой фигуры Ф в точке О, а угол МОN’ =180° - называется внешним углом кривой К или выпуклой фигуры Ф. [7, 189]

    Согласно этому определению все точки выпуклого многоугольника, кроме вершин, являются обыкновенными, причем касательными в этих точках являются стороны многоугольника. Вершины выпуклого многоугольника являются его угловыми точками, а определенные выше углы совпадают с углами многоугольника в обычном смысле (рис. 1.1.17).


    Рис. 1.1.17
    Сопоставляя оба случая — случай обыкновенной точки выпуклой кривой и случай угловой точки, приходим к заключению, что через каждую точку выпуклой кривой проходит, по крайней мере, одна опорная прямая. [1, 41]

    Определение 1.1.19. Ограниченная фигура называется выпуклой, если через каждую ее граничную точку проходит, по крайней мере, одна опорная прямая. [8, 26]

    Пусть Ф — произвольная ограниченная выпуклая фигура, К— ее граница. Установим на кривой К определенное направление обхода, например, против часовой стрелки. При движении по кривой К в этом направлении фигура Ф все время остается слева (рис. 1.1.18). В соответствии с этим установим направления и на опорных прямых фигуры Ф.

    Будем выбирать направление опорной прямой l фигуры Ф таким образом, чтобы фигура Ф лежала слева от прямой l(рис. 1.1.19).


    Рис. 1.1.18 Рис. 1.1.19
    В таком случае две параллельные между собой опорные прямые l1 и l2 фигуры Ф получат противоположные направления. Таким образом, каждому направлению в плоскости (которое можно задавать при помощи прямой со стрелкой) будет соответствовать единственная опорная прямая, имеющая это направление (рис. 1.1.19).

    Если К это многоугольник, то задание направления обхода позволяет говорить о направлениях сторон многоугольника.

    Определение 1.1.20. п граничных точек А, В, С,..., Р фигуры Ф расположены в циклическом порядке, если при обходе кривой К,ограничивающей фигуру Ф, против часовой стрелки эти точки встречаются в указанном порядке


    Рис. 1.1.20
    Определение 1.1.21. Если точки А, В, С,..., Р кривой К расположены в циклическом порядке, то многоугольник АВС...Р называется вписанным в кривую К.

    Определение 1.1.22. Если l1, l2, ... , lпэто п опорных прямых выпуклой фигуры Ф, на каждой из которых установлено направление, а П1, П2, ... , Пn - соответствующие им левые полуплоскости (рис.1.1.21), то Ф расположена в каждой из этих левых полуплоскостей, а значит, и в их пересечении. Если это пересечение ограничено, т. е. является многоугольником, то этот многоугольник называется описанным вокруг фигуры Ф или вокруг ограничивающей ее кривой К.[8, 27]


    Рис. 1.1.21
    Из этого определения следует, что многоугольник, описанный вокруг выпуклой фигуры, всегда является выпуклым. Сторонами описанного многоугольника являются отрезки прямых l1, l2, ... , lп.

    Может, однако, оказаться, что три (или больше) из взятых п опорных прямых будут проходить через одну и ту же граничную точку фигуры Ф (которая в этом случае обязательно является угловой; рис. 1.1.22). В таком случае описанный многоугольник будет иметь меньше чем п сторон. Такой многоугольник называют n-угольником, имеющим одну или несколько сторон нулевой длины, т. е сторон, превратившихся в точки. Эти стороны нулевой длины имеют определенные направления, а именно направления соответствующих опорных прямых


    Рис. 1.1.22
    Это позволяет говорить об п внутренних и внешних углах описанного n-угольника независимо от того, имеет ли он стороны нулевой длины или нет.

    Определение 1.1.23. Длиной ограниченной выпуклой кривой К и площадью фигуры Ф, которую эта кривая ограничивает, называются пределы периметров, соответственно площадей, вписанных в Ф многоугольников, все стороны которых безгранично уменьшаются, или описанных вокруг Ф многоугольников, все внешние углы которых безгранично уменьшаются.

    Из этого определения следует, что если выпуклая кривая К целиком заключена внутри выпуклой кривой К’, то длина К не может быть больше длины К’.
      1   2   3   4   5


    написать администратору сайта