Надежность и ТД. Надежность. Регламентированы гост 27. 00289 Надежность в технике. Термины и определения
Скачать 1.7 Mb.
|
УРАВНЕНИЕ СВЯЗИ ПОКАЗАТЕЛЕЙ НАДЕЖНОСТИЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ БЕЗОТКАЗНОСТИ1. Уравнение связи показателей надежности В лекции 3 приведены выражения, определяющие вероятность безотказной работы (ВБР) и вероятность отказов (ВО) в функции ПРО f(t). Поскольку интенсивность отказов (ИО) (t) является более полной характеристикой надежности, представляет интерес выразить ВБР P(t) через ИО. Используя выражение для интенсивности отказов запишем dP(t) /dt = - (t)·P(t). Разделяя переменные (умножив обе части на dt / P(t)), получим dP(t) / P(t) = - (t) dt. Интегрируя от 0 до t и принимая во внимание, что при t = 0 ВБР объекта P(0) = 1, получаем откуда уравнение связи основных показателей надежности имеет вид:
Величина (t) dt – есть вероятность того, что элемент, безотказно проработавший в интервале наработки [0, t], откажет в интервале [t, t + dt]. Уравнение связи показывает, что все показатели надежности P(t), Q(t), f(t) и (t) равноправны в том смысле, что зная один из них, можно определить другие. 2. Числовые характеристики безотказности невосстанавливаемых объектов 2.1. Средняя наработка до отказа Рассмотренные выше функциональные показатели надежности P(t), Q(t), f(t) и (t) полностью описывают случайную величину наработки T = {t}. В то же время для решения ряда практических задач надежности бывает достаточно знать некоторые числовые характеристики этой случайной величины и, в первую очередь, среднюю наработку до отказа. Статистическая оценка средней наработки до отказа
где ti – наработка до отказа i-го объекта. При вероятностном определении средняя наработка до отказа представляет собой математическое ожидание (МО) случайной величины T и определяется:
Используя выражение для плотности распределения отказов и интегрирование по частям, можно преобразовать (2) к виду
с учетом того, что P(0) = 1, P( ) = 0. Из (3) следует, что средняя наработка до отказа геометрически интерпретируется как площадь под кривой P(t) – рис. 1. Рис. 1 Очевидно, что с увеличением выборки испытаний N средняя арифметическая наработка (оценка 0) сходится по вероятности с МО наработки до отказа. МО наработки T0 означает математически ожидаемую наработку до отказа однотипных элементов, т. е. усредненную наработку до первого отказа. На практике также представляют интерес условные средние наработки: 1) средняя полезная наработка ( ) определенная при условии, что при достижении наработки t1 все оставшиеся работоспособными объекты снимаются с эксплуатации; 2) средняя продолжительность предстоящей работы ( ) при условии, что объект безотказно работал на интервале (0, t1). Причины использования этих показателей: 1. Высоконадежные объекты (элементы электронных схем), как правило, эксплуатируются меньший срок чем T0 (tэкс < T0), т. е. заменяются по причине морального старения раньше, чем успевают наработать T0. 2. Часто для указанных объектов сокращают период испытаний (проводят до наработок соответствующих их моральному старению), поэтому T0 в таком случае понимают как среднюю наработку, которая имела бы место в действительности, если бы ИО оставалась такой, какой она была в начальный период испытаний. Средняя полезная наработка (по аналогии с T0): Средняя продолжительность предстоящей работы Соотношение между , и T0: + · P(t1) . Графические понятия и T0|t > t1 иллюстрируются рис. 2. Рис. 2 В то же время средняя наработка не может полностью характеризовать безотказность объекта. Так при равных средних наработках до отказа T0 надежность объектов 1 и 2 может весьма существенно различаться (рис. 3). Очевидно, что в виду большего рассеивания наработки до отказа (кривая ПРО f2 (t) ниже и шире), объект 2 менее надежен, чем объект 1. Поэтому для оценки надежности объекта по величине 0 необходимо еще знать и показатель рассеивания случайной величины T = {t}, около средней наработки T0. К числу показателей рассеивания относятся дисперсия и среднее квадратичное отклонение (СКО) наработки до отказа. Рис. 3 Дисперсия случайной величины наработки: - статистическая оценка
- вероятностное определение
СКО случайной величины наработки:
Средняя наработка до отказа T0 и СКО наработки S имеют размерность [ед. наработки], а дисперсия D - [ед. наработки 2]. Контрольные вопросы: Поясните смысл уравнения связи показателей безотказности? Дайте определение статистической оценки и вероятностного представления средней наработки до отказа? Перечислите условные средние наработки до отказа и поясните необходимость их использования? Дайте определение статистических оценок и вероятностного представления характеристик рассеивания случайной величины наработки. Лекция 5 |